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eluded indicate that no practical advantage is gained by the use 
of wider tires on vehicles of this class and weight. 

The trail is of the usual construction, two pressed steel flasks 
of channel section tied together by transoms and plates. The 
front ends of the flasks are riveted to cast steel axle bearings 
which extend to the front of the axle and support between them 
the pintle bearing p. The location of the pintle socket in front 
of the axle permits the use of a shorter trail and reduces the weight 
.at end of trail to be lifted in limbering. 

Bearings are provided at about the middle of the trail, in the 
opening seen in Fig. 128, for a detachable geared drum which is 
used in giving initial compression to the counter recoil springs in 
assembling, and in withdrawing the gun to -its traveling position. 
When not in use the drum is kept in the tool-box in the trail. 

The spade with its horizontal floats is hinged to , the trail on 
top. For traveling it is turned up and rests on top of the trail, 
see Fig. 129; for firing it is turned down. In either position it is 
locked in place by a heavy key bolt. 

A bored lunette plate is riveted to the bottom of the trail, for 
engagement on the pintle of the limber. 

The Limber.-The limber, Fig. 130, is merely a wheeled turn-

FIG. 130. 

table for the support of the end of the trail in traveling. It has 
the usual arrangements for the attachment of the team. Its 
wheels are interchangeable with those of the carriage. Th~ 

turntable, shaped to fit the end of the trail, is mounted on a frame 
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fixed to the axle. It forms a seat. for the trail. The seat is 
pivoted at the rear end and its front end rests on · rollers which 
travel on a circular path on the limber. A pintle on the seat en­
gages in the lunette in the bottom of the trail. 

When traveling, in order to distribute the weight as evenly as 
possible between the front and rear wheels of the limbered carriage, 
the gun is disconnected from the piston rod and spring rods, and 
drawn back 40 inches to the rear, Fig. 129. In this position the 
recoil lug is secured between two stout braces attached to a heavy 
trail transom. The breech of the gun is thus supported and 
rigidly held in traveling, and the elevating and traversing mech­
anisms are relieved from all strains. The braces referred to are 
pivoted in the trail, and when not in use are turned down inside 
the trail. 

189. Weights.-The weight of the gun carriage complete is 
4440 lbs., and that of the gun and carriage, 7170 lbs. The weight 
at the end of the trail, gun in firing position, or the weight to be 
lifted in limbering, is 400 lbs.; with the gun in traveling position, 
this is increased to 1150 lbs., which is the part of the weight of 
the gun carriage sustained by the limber. 

Siege Limber Caisson.-For the transportation of ammuni­
tion for siege batteries there is provided a vehicle called the siege 
limber caisson. AB the name indicates, this vehicle is composed of 
two parts. Each part supports an ammunition chest arranged to 
carry 28 rounds of 4.7-inch ammunition or 18 rounds of 6-inch 
ammunition, thus making 56 rounds of 4.7-inch ammunition or 
36 rounds of 6-inch ammunition per vehicle. For each siege 
battery of 4 guns 16 limber caissons are provided. 

The 6-inch Siege Howitzer.-Thie is a short piece, 13 calibers 
long, mounted on a wheeled carriage so constructed that the 
piece cap be fired at angles of elevation from minus 5 to plus 45 
degrees. This wide range of elevation on a wheeled mount in­
troduces into the carriage requirements not encountered in the 
construction of the carriages previously described, which provide 
for a maximum elevation of 15 degrees. 

The piece is made from a single forging, Fig. 131. A lug, l, 
extends upward from its breech end for the attachment of the 
tecoil piston rod and the yoke for the rods of the spring cylinders. 
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Flanged rails r formed above the piece support it on the cradle of 
the carriage, on which the piece slides in recoil. 

The operating lever of the breech mechanism of the gun, Figs. 
132 and 133, is above the axis of the gun instead of below it as 
in other guns. It is so placed for the purpose of increaSing the 
clearance in recoil and for convenience in operating. 

FIG. 131. 

190. The Carriage.-The cradle, Figs. 132 and 133, is pro­
vided with recoil and spring cylinders. The arrangement of the 
springs in the spring cylinders is the same as shown in Fig. 126 
for the 4.7-inch siege gun. The gun is placed below the cylinders' 
in order that the center of gravity of the system may be as low as 
possible. The trunnions of the cradle rest in beds in the top 
carriage, which in turn rests on and is pintled in the part called 
the pintle bearing. Flanges on the top carriage engage under 
clips on the pintle bearing. The forward ends of the trail flasks 
are riveted to the pintle bearing, which forms a turntable on which 
the top carriage, and the parts supported by it, have a movement 
of three degrees in azimuth to either side. The traversing is ac­
compUshed by means of the hand-wheel t on the left side. The 
traversing shaft is supported in a bracket, a, fixed to the left flask, 

·and its worm works in a nut, 0, pivoted to the top carriage. 
THE ROCKER.-The rear part of the rocker is a U-shaped piece 

that passes under the gun and is attached to the cradle by the hook 
k, pivoted in the cradle. Arms extend forward from the sides of 
the U and embrace the cradle trunnions between the cradle and 
the cheeks of the top carriage, so that the rocker may rotate 
about the cradle trunnions. The sights are seated on a bar sup­
ported on the left vertical arm of the rocker. The upper end of 
the elevating screw n is attached to the bottom of the' rocker, 
while the lower end of the screw and the elevating gear are sup-
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ported by trunnions in lugs on the under side of the top car~ 
riage. The rocker therefore moves in elevation in the top carriage 
and gives elevation to the gun-supporting cradle fastened to the 
rocker by the hook k. The elevating apparatus is operated by a 
hand-wheel e on either side. 

THE TRAIL.-The flasks of the trail extend separately to the 
rear a sufficient distance to permit free movement between them 

FIG. 133. 

of the gun in recoil at any elevation. They are then joined by 
transoms and top and bottom plates, and terminate in a detachable 
spade which is secured to the top of the trail when traveling. 
Sockets are provided for two handspikes at the end of the trail. 
Two lifting bars are also fixed to the trail. In order t.o permit the 
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desired movement of the cradle in elevation the axle is in three 
parts, the middle part lower than the two axle arms. The three 
parts are held by shrinkage in cylinders formed in the sides of the 
pintle bearing. 

The wheel brakes, used both in firing and in traveling, are 
manipulated by hand-wheels b in front of the axle. 

191. RECOlLCONTROLLING SysTEM.-The feature of this car­
riage which chiefly differentiates it from other carriages described 
is the provision for the automatic shortening of recoil as the ele­
vation of the gun is increased. From minus 5 degrees to 0 eleva­
tion the gun has a recoil of 50 inches. As the elevation increases 
from 0 to 25 degrees the length of recoil diminishes continvously 
from 50 inches to 28 inches. For elevations between 25 and 45 
degrees the length of recoil rmeains at 28 inches. The variation 
in length of recoil is necessitated by the approach of the breech to 
the transoms and to the ground as the piece is elevated. 

The automatic regulation of recoil is produced in the following 
manner. Four apertures are cut in the piston of the recoil cyl­
inder and two longitudinal throttling grooves in the walls of the 
cylinder. The total area of apertures and deepest section of the 
grooves is the proper maximum area of orifice for the 50-inch 
length of recoil, while the grooves alone furnish the proper con­
tinuous area of orifice for a recoil of 28 inches. A disk rotatably 
mounted on the piston rod against the front of the piston, and 
provided with apertures similar to those in the piston and similarly 
placed, is rotated on the piston rod during the recoil of the piece 
by two lugs projecting into helical guide slots cut in the walls of 
the recoil cylinder. The rotating disk gradually closes the aper­
tures in the piston, and the twist of the guiding slots is such that 
the area of orifice is varied as required for limiting to 50 inches the 
recoil of the gun when fired at 0 elevation. 

The recoil cylinder is rotatablymounted in the cradle. Teeth 
cut on its outer surface, Fig. 134, mesh in the teeth of a ring sur­
rounding the right spring cylinder, and the teeth of the ring also 
mesh, at any elevation between 0 and 25 degrees, in a spiral 
gear cut on the cylindrical block s, which is seated in the 
hollow trunnion of the cradle and is fast to the right cheek 
of, the top carriage. As the gun is elevated from 0 to 25 
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degrees the spiral teeth of the gear· cause the ring to rotate 
clockwise and the cylinder counter 
clockwise. The rotating recoil !J 
cylinder carries with it the disk. ~ 
in front of the piston, causing the ~ 
disk to close the piston apertures 
more and more until at 25 degrees 
elevation they are completely 
closed. The throttling grooves ~ 
in the walls of the cylinder 
then provide the proper area . 
of orifice for the 28-inch length FIG. 134. 

of recoil permitted to the gun at elevations between 25 and 45 
degrees. 

LOADING POSITION.-To load the piece after firing at high an­
gles the hook k, which holds the cradle to the rocker, is disengaged 
by means of a handle, h, conveniently placed on top of the cradle, . 
and the cradle and gun are swung by hand to a convenient position 
for loading. The center of gravity of the tipping parts is in the axis 
of the trunnions. A pawl, 3, attached to the cradle automatically 
engages teeth, 4, on the top carriage and retains the gun in the 
loading position until released by means of the same handle h 
that was used to disengage the cradle hook. 

As the sights and elevating screw are attached to the rocker, 
their positions are not affected by the position of the piece in load­
ing. The operations of laying the piece may therefore be per­
formed at the same time as the loading. 

STABILITY OF THE CARRIAGE.-The piece is set low in the car­
riage to diminish as far as possible the overturning moment; but 
the maximum velocity of free recoil of this light piece is so great 
that stability of the carriage at all angles of elevation could not 
be obtained without exceeding the limit of weight and making the 
recoil unduly long. The carriage will be stable for angles of eleva­
tion greater than about 10 degrees. The wheels are expected to 
rise from the ground in firings at angles of elevation less than 10 
degrees. 

THE LIMIJER.-The limber is the same as the limber of the 
4.7-inch siege carriage previously described. When limbered the 
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FIG. 135. 

~trP~~-l,\---':-----------"--1 

i 
-:-I' 

. FIG. 136. 

weight is slightly less than the limit of 8000 pounds, considered as 
a maximum load for a siege team. 

192. Siege Artillery in Present Service.-The wheeled siege 
pieces in present service are the 5-inch gun, shown in Fig. 135, 
and the 7-inch howitzer, Fig. 136. 
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When emplaced in a siege battery the carriage for either piece 
rests on a wooden platform. Recoil is limited by means of a 
hydraulic buffer attached to the trail and pintled in front to a 
heavy pintle fixed to the platform. The howitzer also recoils on 
the carriage, the recoil of the piece being controlled by hydraulic 
buffers one on each side in front of the trunnions. Springs, strung 
on rods in rear of the trunnions, return the gun to the firing posi~ 
tion. The springs are either coiled or Belleville springs, the latter 
being saucer shaped disks 01 steel strung face to face and back to 
back. 

The pieces are mounted at a height of about six feet above the 
ground to enable the guns to be fired over a parapet of sufficient 

. height to shelter the gunners. 
For traveling, the guns are shifted to the rear into trunnion. 

beds provided in the trail. 
The 7-inch siege mortar and carriage are shown in Fig. 137. 

,­. 
~----

_----J 

FIG. 137. 

The carriage rests on three traverse circle segments f bolted to 
the platform. It is held to the paltform by the overhanging 
flanges of the segments g. Elevation is given to the gun by means 
of the handspike l which, for the purpose, is seated in a slot in the 
trunnion; and direction is given by means of the handspikes j 
which are engaged against lugs on the carriage. The means of 



332 ORlJN ANCE AND GUNNERY. 

controlling the recoil of the piece are similar to those employed 
with the 7-inchhowitzer. 

193. Seacoast Artillery.-Comprised in the seacoast artillery 
are guns . ranging in caliber from 2.24 inches to 16 inches, their 
projectiles ranging in weight from 6 pounds to 2400. The 2.24-inch 
and 3-inch guns, called the 6-pounder and the 15-pounder, are used 
for the defense of the sea fronts of fortifications against landing 
parties and for the defense of the submarine mine fields. The 
guns ·of medium caliber, from 4 to 6 inches, are best used for the 
protection of places subject to naval raids, and for the defense of 
mine fields at distant ranges. Their fire is effective against un­
armored or thinly armored ships. 

The 8- and lO-inch guns are effective against armored cruisers 
and against the thinly armored parts of battleships. 

The proper target for guns 12 inches or more in caliber is the 
heavy water line armor of the enemy's battleship. 

The 12-inch gun is the largest gun at present mounted in our 
fortifications. One 16-inch gun has been manufactured and satis­
factorily tested, but no guns of this caliber are mounted. The 
latest model of 12-inch gun was designed to give the 1000 pound 
projectile a muzzle velocity of 2550 feet, which would insure per­
foration, at a range of 8700 yards, of the 12-inch armor carried by 
the latest type of battleship. But it has been found that in the 
production of this high muzzle velocity in a heavy projectile the 
erosion due to the heat and great volume of the powder gases is 
so great as to materially shorten the life of the gun. It has been 
decided therefore as a measure of economy to reduce the muzzle 
velocities of the larger guns from 2550 feet to 2250, and to build 
for the defense of such wide waterways as cannot be properly 
defended by the 12-inch guns with the reduced velocity, 14-inch 
guns which will give to a 1660-pound projectile a muzzle velocity 
of 2150 feet, sufficient to insure perforation of 12-inch armor at a 
range of 8700 yards. 

The wide channels that exist at the entrances to Long Island 
Sound, Chesapeake Bay, Puget Sound, and Manila Bay will require 
these 14-inch guns for their defense. 

The table following contains data relating to seacoast 
guns. . :i· 
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2. 24-inch 1900 1.35 6 0 .25 2400 340QO 18 7600 25.1 695 
3-inch 1903 6.06 15 0.35 3000 34000 15 8500 24.1 776 

4. 72-inch Armstrong 10.5 45 1.96 2600 34000 15 10000 26.4 718 
5-inch 1900 26 58 2 .75 3000 36000 15 10900 27.0 865 
6-inch 1905 42 106 4.6 2900 36000 15 12400 29.4 926 
8-inch 1888 80 316 19 2200 38000 12 11000 23.5 1080 

lO-inch 1900 224 604 33 2500 38000 12 12300 24.7 1148 
12-inch 1900 367 1046 58.3 2500 38000 10 11600 21.5 1269 
14-inch 1906 280 1660 58 .5 2150 36000 10 11300 20.9 1302 
16-inch 1895 612 2400 139 .3 2150 38000 10 12800 22.4 1373 
Mortar. 

lO-inch 1890 34 604 33 1150 33000 45 11500 48 .1 97..5 
12-inch 1890 54 1016 58 .3 1150 33000 45 13400 52 .7 1055 

The bursting charges given in the table are for shell. The bursting charge 
for a shot is about one third of the bursting charge for a shell of the same caliber. 

Other data concerning l ~he seacoast guns will be found in thl;} 
table on page 135. 

Seacoast Guns.-The seacoast guns and mortars are con­
structed as shown on pages 237 and 238. As the considerations 
that limit the weights of the guns of the mobile artillery do not 
apply to seacoast guns mounted on fixed platforms, and as with 
longer guns higher muzzle velocities may he obtained without 
increasing the maximum pressure, the seacoast guns are much 
longer, in calibers, than are the field and siege pieces. This may 
be noted in the table on page 135. 

All seacoast guns up to 4.7 inches in caliber use fixed ammuni­
tion. In guns of greater caliber the projectile is inserted first and 
is follovved by the powder charge made up in one or more bags. 
In general the breech mechanism of the guns using fixed ammuni­
tion is of the type described with the 3-inch fie1d gun. Guns 
five and six inches in caliber are provided with the Bofors of simi­
lar mechanism. Larger guns have the cylindrical slotted screw 
mechanism described on page 256. 

194. Seacoast Gun Mounts.-The mounts for the seacoast guns, 
commonly called carriages, are distinguished as barbette or dis­
appearing carriages according as they hold the gun always ex­
posed above the parapet or withdraw the gun behind the parapet 
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at each round fired. The disappearing carriage has the advantage 
of excellent protection for the carriage and gun crew, and, for guns 
of the larger calibers, the added advantage of greatly increased 
rapidity of fire. The increased rapidity of fire is due to the lower­
ing of the gun to a height convenient for loading, so that the heavy 
projectiles and charg~s of powder need not be lifted in loading. 
On high sites the disappearing carriage is not necessary to secure 
protection for the gunners, for behind the parapets the gunners 
can only be reached by high angle fire from the enemy's ship, and 
on account of the excessive strain on the decks that would accom­
pany such fire guns aboard ship are not so mounted that they can 
be fired at high angles. Disappearing carriages, emplaced, are 
more costly than barbette carriages, but the advantage of the 
more rapid fire from the disappearing carriage has determined its 
use in this country for all seacoast guns above six inches in callber, 
on high .sites as well as on low sites. 

Many of the &-inch guns and all guns below six inches in caliber 
are mounted on barbette carriages provided with shields of armor 
plate for the protection of the gunners . 

. Seacoast guns being permanently emplaced the weights of the 
gun and the carriage, and simplicity of mechanism in both gun and 
carriage, are not matters of such importance as they are in the 
field and siege artillery. We consequently find adapted to the 
seacoast guns and carriages every mechanism that will assist in 
increasing the rapidity of fire. Fixed ammunition is used in guns 
up to 4.7 inches in caliber and its use will probably be extended to 
larger calibers. Experiments are being made with mechanisms 
for the automatic or semi-automatic opening and closing of the 
breech. The mechanisms for elevating the gun and for traversing 
the carriage are arranged to be operated from either side of tl1e 
carriage, and in the carriages for the larger guns provision is made 
forthe operation of these mechanisms both by hand and by electric 
power. Sights are provided on both sides of the gun, and the 
operations of aiming and loading may proceed together. 

Finally the magazines and shell rooms in the walls of the 
fortifications are so arranged with regard to the gun emplacement, 
and so equipped, as to insure a rapid delivery of ammunition to 
every gun. 
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The seacoast gun mounts differ for guns of different caliber. 
A description of one mount of each distinct type will follow and 
will serve to show the principles that govern in similar construc­
tions. 

GENERAL CHARACTERISTlcs.-In general, the mount consists of 
a fixed base bolted to the concrete platform of the emplacement, 
and of a gun-supporting superstructure resting on the base and 
capable of revolution about some part of it. The superstructure 
supports, in addition to the gun, all the recoil controlling parts 
and the necessary mechanisms for elevating, traversing, and re­
tracting the gun. 

Fastened to the fixed base or to the platform around the base 
is an azimuth circle graduated to half degrees, and on the movable 
part of the carriage is fixed a pointer, with vernier reading to 
minutes, that indicates the azimuth angle made by the gun with a 
meridian plane through its center of motion. 

The gun, supported by means of its trunnions on the super­
structure of the carriage or contained in a cradle which is itself so .. 
supported, has movement in elevation about the axis of the trun­
nions. The elevating mechanisms, or the sights, are provided 
", ith graduated scales which usually indicate the range correspond­
ing to each position of the gun . . 

Protecting guards are provided wherever necessary for the 
protection of the gunners against accident, or for the protection 
of the mechanisms of the carriage against the entrance of dust or 
water. 

195. Pedestal Mounts.-Seacoast guns up to six inches in 
caliber are mounted in barbette on carriages similar in construction 
to the carriage shown in Figs. 138 and 139. 

A conical pedestal of cast steel, p Fig. 138, is bolted to the 
concrete platform. A pivot yoke y free to revolve is seated in the 
pedestal. In the upwardly extending arms of the pivot yoke 
are seats for the trunnions . of the cradle c. The gun is sup­
ported and slides in recoil in the cradle. The weight of all 
the revolving parts is supported by a roller bearing r on 
a central boss in the base of the pedestal. In the lower rear 
portion of the cradle are formed a central recoil cylinder and two 
spring cylinders, Fig. 139, similar to the corresponding cyJ-
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inders described in the 4.7-inch siege carriage, but much shorter. 
AB the seacoast gun mounts are firmly bolted to pli1tforms and as 

they may be made as strong as 
desired without limit as to 
weight, these mounts will stand 
much higher stresses, without 
movement or rupture, than can 
be imposed on a wheeled 
carriage. We therefore find 
that shorter recoil is allowed 
to the seacoast guns than to 
the lighter field and siege 
guns. Thus the recoil of the 
5-inch gun on the pedestal 

FIG. 138. mount is but 13 inches, and 
of the 6-inch gun 15 inches, 

while the 4.7-inch siege gun recoils 66 inches on its carriage and 
the 3-inch field gun 45 inches. . 

Bolted to the arms of the pivot yoke, on each side, are brack­
ets to which are attached platforms for the gunners. The plat­
forms move with the gun in azimuth and carry the gunners un­
disturbed in the operations of pointing and of manipulating the 
breech mechanism. 

The carriage may be traversed from either side. The shafts 
of the traversing hand-wheels extend downward toward the 
pedestal and actuate a horizontal shaft held in bearings on the 
pivot yoke. A worm on this shaft acts on a circular worm-wheel 
surrounding the top of the pedestal, t Fig. 138. 

Elevation is given by the upper hand-wheel, on the left side 
only. The elevating gear is supported by a bracket bolted to the 
platform bracket and works on an elevating rack attached to the 
cradle, the center of the rack being in the axis of the trunnions .. 

The traversing rack, or worm-wheel, surrounding the upper 
part of the pedestal is held to the pedestal by an adjustable friction 
band; and a worm-wheel in the elevating gear, contained in the 
gear casing fixed to the elevating bracket, Fig. 139, is held between 
two adjustable friction disks. These friction devices are so ad­
justed as to enable the gun to be traversed or elevated without 
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slipping oUhe mechanism, and yet to permit slipping in case undue 
strain is brought on the teeth of the worm-wheels. 

A shoulder guard is attached to the cradle on each side of the 
gun to protect the gunners from injury during movement of the 
piece in recoil. 

Open sights and a telescopic sight are seated in brackets on 
the cradle on each side of the gun. Dry batteries in two boxes 
held in brackets secured to the platform brackets supply electric 
power for firing the piece and for lighting the electric lamps of the 
sights. 

The shield, of hardened armor plate, 41 inches thick; is fast­
ened by two spring supports to the sides of the pivot yoke. The 
bolt holes for the shield support are seen in Fig. 139. The shield is 
pierced with a port for the gun and with two sight holes, and is 
inclined at an angle of 40 degrees with the horizon, see Fig. 201. 

196. The Balanced Pillar Mount.-A variation of the mount 
just described is found in the balanced pillar mount, also called 
the masking parapet mount. This mount is constructed for guns . 
up to 5 inches in caliber. The purpose of this mount is to afford a 
means of withdrawing the gun, when not in use, behind the para­
pet and out of the view of the enemy. The gun is withdrawn 
behind the parapet only after the firing is completed, and not 
after each round. Guns mounted on the disappearing carriages 
later described are withdrawn from view after each round fired. 

The construction of the balanced pillar mount will be under­
stood from Fig. 140. The pintle yoke, with all the parts sup­
ported by it, rests on the top of a long steel cylinder which has 
movement up and down in an outer cylinder. The base · of the 
pintle yoke is circular. It embraces a heavy pintle formed on the 
top of the cylinder and rests on conical rollers which move on a 
path provided on the cylinder top. Clips attached to the base of 
the pivot yoke engage under the flanges of the roller path and 
hold the top carriage to the cylinder. 

Imbedded in the concrete of the platform is the outer cast iron 
cylinder in which the inner cylinder slides up and down. The 
weight of the inner cylinder and supported parts is balanced by 
lead and iron counterweights strung on a central rod which is 
connected to brackets on the inside of the inner cylinder by thr~e 



ORDNASCE AlI"D GUNNERY. 

chains. The pulleys over which the chains pass are supported on 
posts that pass through holes in the counterweight and rest in 
sockets formed in the bottom of the cylinder. For lifting and 
lowering the inner cylinder with the gun and top carriage, a ver-

tical toothed rack is fixed to the exterior of the inner cylinder. A 
pinion is seated in bearings provided at the top of the outer cyl­
inder and engages in the rack. The pinion is turned by means 
of two detachable levers mounted on the ends of the pinion shaft. 
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By means of a friction clamp the pinion is made to hold the ele­
vated carriage against any sudden downward shock. 

The construction permits a vertical movement of the gun and 
carriage of about 3} feet. 

When firing, the muzzle of the gun projects over the parapet ; 
and before lowering, the gun is turned ·parallel to the parapet. 

In a similar mount provided for 3-inch guns the outer cylinder 
is a double cylinder. The counterweight is annular and occupies 
the space between the two cylinders composing the double outer 
cylinder. The lifting levers are applied directly to the shaft of 
one of the chain pulleys, over which pass the chains that connect 
the counterweight to brackets on the outside of the inner cyl­
inder. The brackets move in slots provided in the interior of the 
double cylinder. 

197. Barbette Carriages for the Larger Guns.-Guns from 8 
to 12 inohes in caliber are mounted in barbette on carriages similar 
in construction to that shown in Fig. ) 41. The carriages are made . 

r ... --·----... -.. -.. ---... -... -......... -... · ... ~-- .. -....... ----.. -... -... -r-... -.... -: ............ '"1--.......... .. 
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FIG. 141. 

principally of cast steel, all the larger parts with the exception of 
the base ring being of that metal. The cast iron base ring, A 
:Fig. 142, has formed on it a roller path, b, on which rest the live 
conical rollers E of forged steel. The rollers are flanged at their 
inner ends and kept at the right distance apart by outside and 
inside distance-rings B. The central upwardly extending cylinder 
c forms a pintle about which the upper carriage revolves. Em-
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bracing the pintle and resting on the rollers is an upper circular 
plate called the racer. Clips attached to the racer, see Fig. 141; 
and engaging under the flange of the lower roller path hold the 
parts together under the shock of firing. The two cheeks, a 
Fig. 141, of the chassis are cast in one piece with the racer for the 

IE /B, 
~====~~:..-...~ 

FIG. 142. 

smaller carriages and separately for the larger carriages, and are 
connected together by transoms and strengthened by inner and 

outer ribs. A groove or recess is 
formed in the upper part of each 
cheek, see Fig. 143, for the series of 
rollers seen in Fig. 141, on which the 
top carriage ' moves in recoil. The 
axles of the rollers are fixed in the 
walls of the grooves at such a height 

FIG. 143. that the tops 6f the rollers are just 
above the . top of the chassis. 

The top carriage, D Fig. 141 and a Fig. 143, rests on the rollers 
and is held to the chassis by means of the clips d, Fig. 143. The 
top carriage is cast in one piece. It consists of two side frames 
united by a transom a passing under the gun. The side frames 
contain the trunnion beds c for the gun trunnions and the two 
recoil cylinders b. The piston rods of the recoil cylinders are 
held in lugs formed on the front of the chassis. 

Elevation from minus 7 to plus 18 degrees is given by means 
of the hand-wheel seen near the breech of the gun, Fig. 141, or by 
the hand-wheel just under the top carriage. The carriage is 
traversed by means of the crank handle in front of the chassis. 
Through a worm and worm-wheel the crank actuates a sprocket­
wheel fixed in bearings on the chassis. A chain that encircles the 
base ring and that is fast to the base ring at one point passes over 
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the sprocket-wheel. When the sproc~et-wheel is turned it pulls 
on the chain and causes the chassis to revolve. 

In later carriages the chain is replaced by a circular toothed 
-rack attached to and surrounding the base ring, and the sprocket­
wheel is replaced by a gear train whose end pinion meshes in the 
rack. There is less friction and less lost motion with this construc­
tion. 

The shot is hoisted to the breech by means of a crane attached 
to the side of the carriage. 

When the gun is fired, the gun and top carriage recoil to the 
rear on the rollers. The length of recoil is limited by the length 
of the recoil cylinder, and on this type of carriage is about five 
calibers. The recoil is absorbed partly in lifting the gun and top 
carriage up the inclined chassis rails and partly by friction, but 
principally by the resistance of the recoil cylinders, as explained in 
the chapter on recoil. . 

On cessation of the recoil the gun returns to battery 1lllder the 
action of gravity, the inclination of the chassis rails, four degrees, 
being greater than the angle of friction. 

198. Disappearing Carriages.-The importance of the funce 

tion of the heavy seacoast guns, the difficulty in the way of quick 
or · extensive repairs to their mounts, the great cost of the guns 
and their carriages, are all considerations that point to the desirae 
bility of giving to these guns and carriages the greatest amount 
·of protection practicable. 

The guns are therefore emplaced in the fortifications behind 
very thick walls of concrete, which are themselves protected in front 
. by thick layers of earth. Additional protection is obtained by 
mounting the guns on carriages which withdraw the guns from 
their exposed firing position above the parapet to a position 
behind the parapet and below its crest, where the gun and every 
part of the carriage except the sighting platforms and sight stand­
ards are protected from a shot that grazes the crest at an angle of 
seven degrees with the horizontal. 

An additional and very important advantage gained by the 
use of these carriages is the increased rapidity of fire obtained 
from the guns mounted upon them. The guns in their lowered 
positions are at a convenient level for loading, and the time and 
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labor that must be expended in lifting the heavy projectiles and 
powder charges to the breech of a gun of the same caliber mounted 
in barbette are practically elIminated. 

12-inch Disappearing Carriage, Model 190I.-Theannular bas(l 
ring, b Fig. 144, surrounds a well left in the concrete of the em, 
placement. The racer a rests on live rollers on the base ring and 
is pintled on a cylinder formed by the inner wall of the base ring. 
The racer supports the superstructure as in the carriage just de, 
scribed. It is held to the base ring by clips c, which engage under 
a flange on the inside of the pintle. A working platform, or floor, 
of .steel plates is fixed to brackets x fastened to the racer, and 
moves with the carriage in azimuth. 

The forward ends of the chassis cheeks are continued upward, 
and on the inside of the cheeks and of the upward extensions are 
formed vertical guideways for the crosshead k, from which the 
counterweight w is suspended. . 

GUN LIFTING SYSTEM.-The top carriage, similar in construc­
tion to that of the barbette carriage, rests on flanged live rollers 
which roll on the rails of the chassis. The rollers are connected 
'together by side bars in which the axles of the rollers are fixed. 

The gun levers l are trunnioned in the trunnion beds of the top 
carriage. They support the gun between their upper ends, and 
between their lower ends, the crosshead k from which the counter­
weight is suspended. 

The crosshead is provided with clips that engage the vertical 
guides formed on the inside of the chassis cheeks. Cut on the 
front faces of the clips of the crosshead are ratchet teeth in which 
pawls p engage to hold the counterweight up after the gun has 
recoiled. The pawls are pivoted on the chassis. Levers v ph'oted 
on the ends of a shaft across the front of the chassis serve as means 
for releasing the pawls when it is desired to put the gun in 
battery. 

The counterweight consists of 102 blocks of lead of varying 
size, weighing approximately 164,700 pounds. It is piled on the 
bottom plate m, which is suspended by four stout rods from the 
crosshead. The preponderance of the counterweight may be ad­
justed, within limits, by the addition or removal of small weights 
at the top. 
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199. ELEVATING SYSTEM.-The gun elevating system consists 
of the band n dowelled to the gun and provided with trUIUlions 
that are engaged by the forked ends of the elevating arm h. The 
elevating arm has at its lower end a double ended pin which ro­
tates in bearings in the elevating slide s. The elevating slide has a 
movement up and.down on an inclined guideway machined on the 
rear face of the rear transom. Movement is given to the slide by 
means of a large axial screw on which the slide moves as a nut 
prevented from turning. The screw is turned by gearing on the 
shaft e actuated by hand-wheels outside the carriage. In order 
to counterbalance the weight of the elevating arm and band, and 
to 'equalize the efforts required in elevating and depressing the 
gun, a wire rope passes from the elevating slide over pulleys and 
supports a counterbalancing weight g. The gun moves in eleva­
tion from minus 5 degrees to plus 10 degrees. 

TRAVERSING SYSTEM.-Crank-handles on the traversing shaft 
t actuate, through gearing, a vertical shaft carrying at its lower 
end a pinion 0 which works in a circular rack on the inside of the 
base ring. In a convenient position on the racer near the azimuth 
pointer is placed the lever of a traversing brake, not shown, which 
works against the base ring. By its means traversing is retarded 
. as the carriage approaches any desired azimuth. 

RETRACTING SYSTEM.-Means are provided to bring the gun 
down from its firing position when for any reason it has been ele­
vated into battery and not fired. Detachable crank-handles 
mounted on the ends of the shaft r turn two winding drums on 
the shaft u inside the chassis. A wire rope y leads from each 
drum arou::J.d a pulley at the rear end of the chassis to the top of 
the gun iever, a loop in the end of the rope engaging over the hook 
of the lever. 

SIGHTING SYSTEM.-Elevated platforms are provided on each 
side of the carriage. The telescopic sight, see Fig. 145, is mounted 
above the left platform on a hollow standard that rises from the 
floor of the racer. A vertical rod passing through the standard is 
connected at the top to a pivoted arm carrying the sight, and at 
the bottom the rod is so geared to the elevating shaft that the 
same movement in elevation is given to the sight arm as is given 
to the gun. Within reach of the . gunner at the sight are two 
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crank-handles, at the upper ends of vertical shafts, by means of 
which the gunner has electric control of the elevating, traversing, 
and retracting mechanisms. 

Trials are being made of the panoramic sight fitted to disap­
pearing carriages. The vertical tube of the sight is made very 
long and the sight is attached to the side of the carriage in such a 
position that the eye piece is convenient to the gunner standing 
on the racer platform, while the head piece of the sight is above 
the parapet. 

OPERATION.-The operation of the carriage for firing is as 
follows. The gun is loaded in its retracted position, Fig. 145, 
being held in that position by the pawls p engaged in the notches 
on the crosshead k. After the gun is loaded the tripping levers v 
are raised, releasing the pawls from the notches in the crosshead. 
The counterweight falls and the top carriage moves forward on 
its rollers, the last part of its motion being controlled by the 
counter-recoil buffers in the recoil cylinders, so that the top carriage 
comes to rest without shock on the chassis. By the movement of 
the gun levers the gun is lifted to its elevated position above the 
parapet. 

When the piece is fired the movements are reversed in direc­
tion. The recoil forces the gun to the rear, the top carriage rolls 
back on the chassis rails and the counterweight rises vertically · 
under the restraint" of the guides engaged by the crosshead. 

In the movement either way the upper end of the gun lever de­
scribes an · arc of an ellipse. The path of the muzzle of the gun, 
indicated in Fig. 144, is affected by the constraint of the elevating 
arm. The ellipse is the most favorable figure to follow in the 
movement of a gun on a disappearing carriage. From the firing 
position the movement of the gun is at first almost horizontally 
backward, and the movement downward occurs principally in the 
latter part of the path. Therefore the carriage that moves the 
gun in an elliptical pat.h can be brought nearer to the parapet and 
thus receive better protection than any other carriage. 

The recoil is controlled principally by the recoil cylinders, and 
the shock at the cessation of motion is mitigated by two buffers f 
which receive the ends of the gun levers. The buffers are com­
posed of steel plates alternating with sheets of balata. 
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Balata is a substance that resembles hardened rubber. It has 
not as great elasticity as rubber but does not deteriorate as rapidly 
under exposure to the weather. 

200. Modification of the Recoil System.-In the chapter on 
recoil it was pointed (jut that there is a disadvantage in having the 
control of the counter recoil in the same hydraulic cylinders that 
control the recoil. The adjustment of the counter-recoil system 
affects the adjustment of the recoil system. 

It will also be observed in the carriage just described that in 
the latter part of the movement in recoil the glin is moving 
almost vertically downward. Consequently the movement of the 
top carriage to the rear is very slight during this part of the recoil, 
and the slight movement affords little opportunity for the close 
control by the recoil cylinders of the final movement of the gun. 
But it is in the last part of the recoil that complete control of the 
movement of the gun is most desirable, in order that the gun may 
be brought to rest at any desired position for loading, and without 
shock to the carriage. 

:While the movement of the top carriage is least rapid at the 
latter end of recoil the counterweight has then its most rapid move­
ment. Therefore a recoil cylinder fixed so as to move with the 
counterweight will afford the best control of the final movement 
of the gun. 

The top carriage has its most rapid movement at the latter 
part of the movement of the gun into battery, while the counter­
weight has its least rapid movement at that time. The control 
of the counter recoil is therefore best effected through tl,e top 
carriage. 

By retaining therefore, to act on the top carriage, recoil cyl­
inders adapted for the control of the counter recoil only, and by 
adding to the counterweight a cylinder adapted for control of the 
recoil, we will obtain the advantage of completely separating the 
two systems, thus making them capable of independent adjust­
ment, and the advantage of obtaining from each system the 
greatest control of the movement to which it is applied. 

201. 6-inch Experimental Disappearing Carriage, Model 
1905.-The modification of the recoil system as above indicated 
has been applied to a 6-inch. experimental carriage. 
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The recoil cylinder is held in the center of the counterweight, 
Fig. 146. The lower end of the piston rod is fixed in the lower 
member d of a frame whose sides f are bolted to the bottom of the 
racer a, as shown in the left and rear views. Grooves cut in the 
walls of the recoil cylinder permit the flow of the liquid from one 
side of the piston to the other. For the regulation of the extent 
of the recoil, and therefore of the height of the gun when in load­
ing position, two diagonal channels pass through the center of the 
piston head from one face to the other, and the flow through them 
is controlled by a conical valve enclosed in the upper piston rod, 
which is hollow. The stem of the valve projects above the end of 
the piston rod. 

The counter recoil is checked by the short cylinders s mounted 
on each chassis rail in front .of the top carriage. The pistons of 
the counter-recoil cylinders are not provided with apertures for 
the flow of the liquid from one side of the piston to the other, but 
the flow of the liquid takes place through the pipes p which are led 
from both cylinders to a valve v, by which the area of orifice is 
controlled and through which the pressure in the two cylinders is 
equalized. The pressure in the counter-recoil cylinders does not 
. exceed 500 pounds per square inch, while the pressure in the recoil 
cylinder is 1800 pounds. 

As the top carriage comes into battery the front of the carriage 
strikes the rear end 0 of the piston rod and forces the piston through 
the cylinder against the liquid resistance and against the action 
of springs g mounted on each side of the cylinder. The springs 
act on central rods connected to the forward end of the piston, 
and as the top carriage moves from battery the springs move the 
piston to the rear in position to be acted on by the top carriage 
as it comes back into battery. 

There are other points of difference between this carriage and 
the carriage last described. 

The retraction of the gun from the firing position is accom­
plished without the use of wire ropes by the vertical racks 6, shown 
in the left and rear views, attached to bars that connect the cross­
head k and the bottom section m of the counterweight. The end 
pinions 5 of two trains of gears, one on each side, mesh in the rack, 
the gear trains being actuated by the cranks on the shaft T. The 
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Left View. Rear View. 
FIG. 146.-6-inch Experimental . Disappearing Carriage, Model 1905. 
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retracting mechanism is partially shown in the smaller views. 
The parts are similarly numbered in all the figures. The mechan­
ism is thrown out of gear when not in use. 

The rollers of the top carriage are geared to the top carriage 
so that they are compelled to move with the top carriage and 
there can be no slipping of the top carriage on the rollers. In 
present Gervice carriages this slipping sometimes occurs as the gun 
recoils, so that on counter recoil the rollers reach their position in 
battery before the top carriage, and prevent the top carriage from 
coming fully into battery. 

The sight standard is moved to the front of the chassis in order 
to get better protection for the gunner, for the sight, and for the 
elevating and traversing mechanisms under control of the gunner. 
Through the upper hand-wheel e and the shafts and gears also 
marked e the gunner has control of the elevating mechanism; 
and through another hand-wheel at his right hand, covered by the 
wheel e in the figure, and the shafts and gears marked t he con­
trols the traversing mechanism. 

Firings from this 6-inch carriage have shown that the gunner 
on the sighting platform is so near the muzzle of the gun that he 
is injuriously affected by the blast. The sighting platforms will 
therefore be removed to the rear end of the carriage, in which 
position they will also afford means of access to the breech when 
the gun is up. 

202. Seacoast Mortars.-The thick armored sides of ships of 
war protect the ships to a greater or less extent against the direct 
fire from high powered guns. The great weight of armor that 
would be required for complete deck protection is prohibitive. 
The decks of war ships are therefore thin and practically un­
armored, the heaviest protective deck on any battleship being not 
more than two inches thick over the flat part. The decks there­
fore offer an attractive target. 

As the elevation above sea level of the sites of the guns in most 
fortifications is not sufficient to permit direct fire agaillst the 
decks, there are provided for use against this target the 12-inch 
seacoast mortars, short guns so mounted that they can be fired at 
high angles only. The heavy projectiles fired from these guns 
carry large bursting charges of high explosive. Descending 
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almost vertically on the deck of a ship they easily overcome the 
slight resistance offered, and penetrating to the interior of the 
ship burst there with enormous destructive effect. 

The mortar carriages permit firing only at angles of elevation 
between 45 and 70 degrees. With a fixed charge of powder a lim­
ited range only would be covered by fire between these angles. 
,Charges of several different weights are therefore used in the 
mortars. With each charge a certain zone in range may be cov­
ered by the fire, and the charges are so fixed that the range zones 
overlap. Any point within the limits of range may thus be 
reached by the projectile. The least range with the smallest 
charge provided is about a mile and a half. Mortar batteries are 
therefore uSllally erected at not less than this distance from the 
channels or anchorages that are under their protection. 

The I2-inch Mortar Carriage, Model 1896.-The construction 
of the 12-inch mortar carriage, model 1896, will be understood 
from Fig. 147. The mortar is supported by the upper ends of the 

FIG. 147. 

tW9 arms of a saddle d which is hinged on a heavy bolt to the 
front of the racer. The arms of the saddle are connected by a 
thick web. Extending across under the web is a rocking cap­
piece, c, against which five columns of coiled springs act, sup­
porting the gun in its position in battery and returning it to bat. 
tery after recoil. 
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The lower ends of the springs rest in an iron box trunnioned in 
two brackets bolted to the bottom of the racer. The box oscil­
lates as required during the movement of the saddle in recoil and 
counter recoil. Holes in the bottom of the box and in the cap­
piece and saddle web permit the ends of the rods on which the 
springs are strung to pass through during the movement . . 

The recoil cylinders hare trunnioned in bearings fixed to the 
top of the racer. Bolted to the top of each cylinder is a frame f 
which serves as a guide for the crosshead 0 at the upper end of 
the piston rrJd. The crosshead embraces the stout pin r which 
extends C'utward from the trunnion of the mortar and communi­
cates the motion of the piece in recoil to the piston rod. 

The provision for the flow of liquid in the 
recoil cylinder from one side of the piston to 
the other differs in this carriage from that 
described in other carriages. A small cyl­
inder, A Fig. 148, is formed outside the re­
coil cylinder proper, H. Holes a, bored 
through the dividing wall, form passages 
through which the· oil may pass from the 
front of the piston to the rear. The piston 
head in its movement closes the holes suc­
cessively. Thus as the velocity of recoil de­
creases the area open to the flow of t.he liquid 
is reduced. The area of aperture is also 
regulated by screw throttling plugs b that· 
are seated in the outer wall of the small cyl­
inder. These plugs have stems of different 
diameters, and are used to partially or 
wholly close any of the passages in the 
proper regulation of the recoil. The recoil 
cylinders on each side of the carriage are con­
nected by the equalizing pipe p. 

The counter recoil is checked and the gun 
brought into battery without shock by the 
counter-recoil buffer s, an annular projection 

FIG. 148. 

formed on the cylinder head surrounding the piston rod. The buffer 
enters, with a small clearance, an annular cavity in the head of 
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the piston, and the liquid in the cavity escapes slowly through the 
clearance. As an added precaution against shock when the gun 
returns to battery, buffer stops composed of alternate layers of 
balata and steel plates are held between the crosshead guides of 
the frame I, Fig. 147, under the cap. 

The gun is elevated by the mechanism shown mounted on the 
saddle, Fig. 147, and traversed by means of the crank shaft and 
mechanism supported in a vertical stand on the racer. A pinion 
pon the end of a vertical shaft engages in a circular rack bolted 
to the inner surface of the base ring. 

The movement of the saddle in recoil causes the gun to rotate 
on its trunnions. To prevent excessive rotation of the gun and 
excessive strain on the elevating mechanism, a friction collar is 
provided in the large gear wheel of the elevating mechanism. 
The collar slips in the' gear wheel when the strain is ex­
cessive. 

For determining elevation, a quadrant, similar to the gun­
ner's quadrant described in the chapter on sights, is permanently 
attached to a seat prepared on the right rim base of t~e mortar. 

FIG. 149. 

203. The 12-inch MortarCarriage, Model 189I.-The 12-inch 
mortar carriage, model 1891, on which many 12-inch mortars are 
mounted in our fortifications, is shown in Figs. 149 and 150. 
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The spring cyrnders E are formed in the vertical cheeks bolted 
to the racer. Inside the cheeks are inclined guideways for sliding 
crossheads G. The crossheads receive the 
trurmions of the gun. The pistons h of t.he 
recoil cylinders project downward from the 
crossheads and enter the recoil cylinders H 
attached to the lower parts of the spring cyl­
inders. The recoil cylinders are of the type 
shown in.Fig. 148. The crosshead G has at its 
upper end an arm, r Fig. 150, which projects 
outwardly into the spring cylinder and carries 
at its outer end the adjusting screw k, which 
rests on top of the column of springs. The 
springs are compressed when the gun recoils, 
and return the gun to battery on the cessation 
of recoil. By means of the adjusting screw k 
the height of the trunnion carriages G may be 
adjusted to bring the mortar to the proper 
height for loading. 

The hand-wheel g, Fig. 149, works the shot 
hoist a, by means of which the shot is lifted to 
the breech of the gun for loading. 

204. Subcaliber Tubes.-For the purpose of 
enabling troops to become familiar with the 
operation of the guns and carriages by actual 
firing, yet without the expense attendant upon 

E 

H 

FIG. 150. 

the use of the regular ammunition, there are provided for use 
inside the various service guns smaller guns or gun barrels called 
subcaliber tubes. These are seated in the bores of the larger guns 
in such position that the breech of the subcaliber tube is just in 
front of the breech block of the gun when closed. The sub­
caliber tube is loaded with fixed ammunition arranged to be fired 
by the firing mechanism of the larger gun. Three calibers of sub- . 
caliber tubes are provided: one of 0.30-inch caliber, using the 
small arm cartridge, for guns that use fixed ammunition; one of 
1.475-inch caliber, using I-pounder ammunition, for use in all 
guns 5 inches or more in caliber; and one of 75 mm. (2.95 inches) 
caliber, using I8-pounder ammunition, for use in the I2-inch mortar. 
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. For those guns that use fixed ammunition the 3D-caliber sub­
calwer tube, a 30-caliber rifle barrel, is fixed in a metal mounting 
that has the shape and dimensions of the complete cartridge used 
in the piece. Fig. 151 shows the subcaliber tube for the 3-inch 
rifle. 

FIG. 151. 

The 30-caliber small arm cartridge is inserted in the barrel b 
anq is fired by the percussion firing mechanism of the piece. It 
is ~xtracted, far enough to be grasped by the hand, by the ex­
trahor, two 'bowed springs 8 which are under compression when 
the: small arm cartridge is forced to its seat by the breech block 
~f the gun. A special primer is used in the small arm cartridge, 
Iltrong enough to withstand without puncture the heavy blow of 
the firing pin of the gun. 

The head of the subcaliber cartridge is permitted longitudinal 
movement in the body in order to allow for expansion of the 30-
caliber barrel in firing. 

FIG. 152. 

The 1-pounder tube is provided with different fittings to adapt· 
it to the particular gun in which it is to be used. It is fitted in 
the gun in the manner shown in Fig. 152, which represents the 
75 mm. subcaliber tube in the 12-inch mortar. 

The 75 mm. tube is a gun similar to the mountain gun, without 
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its breech mechanism. The cartridges for the mountain gun are 
used in it. 

The wheel-shaped fittings, called adapters, are screwed on the 
gun. The front adapter fits against the centering slope in the 
bore for the band of the projectile. The outer rim of the rear 
adapter is cut through at the top and the rim is expanded against 
the sides of the bore by the wedge w, w\lich is forced between the 
parts of the rim by means of the screw seated in one of them. 
The tube is prevented from turning in the adapters by the clamp 
screw c. 

The firing mechanism of the guns in which the two larger 
subcaliLer tubes are used is not of the percussion type. . The 
cannoll cartridges used in these two tubes are therefore provided 
with the 110-grain igniting primer, described in the chapter on 
primers, in place of the usual percussion primer. The igniting 
primer in the cartridge is ignited by the flame from the ordinary 
primer seated in the rear end of the breech mechanism of the 
gun. 

Drill Cartridges, Projectiles, and Powder Charges.-For ordi­
nary use at drill, without firing, dummy cartridges are provided 
for guns that use fixed ammunition, and dummy projectiles and 
powder charges for other guns. The dummies have the dimen­
sions and weights of the parts they represent. 

The drill cartridge for guns using fixed ammunition are hollow 
bronze castings, Fig.. 153, of the shape of the service cartridge 
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FIG. 153. 

loaded with shrapnel. For the instruction of cannoneers in fuse 
setting there is fitted at the head of the cartridge a movable ring 
graduated in the same manner as the timc scale on the combina­
tion time and percussion fuse. 

Drill projectiles, for guns separately loaded, are of the con­
struction shown in Fig. 154. A bronze band, b, is inset at the 
bourrelet to prevent wearing of the rifling in the gun by frequent 
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insertion of the projectile. The rotating band r, made in two or 
more sections with spaces between, is pressed to the rear on a 
sloping seat by springs s. When the projectile is rammed with 
force into the gun the band is likely to stick in its seat and thus 
to resist efforts to withdraw the projectile. The method of at­
tachment of the band is for the purpose of affording a means of 
readily overcoming this resistance. The extractor, a hook on the 
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FIG. 154. 

end of a pole, is engaged over the inner lip l. A pull on the pole 
will, if the band is stuck, first move the remainder of the projectile 
to the rear until it strikes and dislodges the band. 

The dummy powder charge, Fig. 155, circular in section, is 

~~~--------------~-----------

FIG. 155. 

made up of a core of metal surrounded by disks of wood, the 
whole covered with canvas. The parts are assembled by means 
of a central bolt. An inner lip I formed in the hollow metal base 
piece is engaged by the hook of the extractor. 



CHAPTER IX. 

EXTERIOR BALLISTICS. 

205. Definitions.-Exterior Ballistics treats of the motion of a 
projectile after it has left the piece. 

In the discussions the dimensions of the gun are considered 
negligible in comparison with the trajectory. 

The Trajectory, bdl, Fig. 156, is the curve described by the 
center of gravity of the projectile in its movement. 

c 

FIG. 156. 

The Range, bl, is the distance from the muzzle of the gun to 
the target. 

The Line 01 Sight, abl, is the straight line passing through 
the sights and the point aimed at. 

The Line 01 Departure, bc, is the prolongation of the axis of 
the bore at the instant the projectile leaves the gun. 

The Plane 01 Fire, or Plane 01 Departure, is the vertical plane 
through the line of departure. 

357 
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The Angle of Position, 0, is the angle made by the line of sight 
with ·the horizontal. 

The Angle of Departure, cp, is. the angle made by the line of 
departure with the line of sight. 

The Quadrant Angle of Departure, cp+ 0, is the angle made by 
the line of departure with the horizontal. 

The Angle of Elevation, cp', is the angle between the line of sight 
and the axis of the piece when the gun is aimed. 

The Jump is the angle i through which the axis of the piece 
moves while the projectile is passing through the bore. The 
movement of the axis is due to the elasticity of the parts ·of the 
carriage, to the play in the trunnion beds and between parts of the 
carriage, and in some cases to the action of the elevating device as 
the gun recoils. The jump must be determined by experiment 
for the individual piece in its particular mounting. It usually 
increases the angle of elevation so that the angle of departure is 
greater than that angle. 

The Point of Fall, f, or Point of Impact, is the point at which 
the projectile strikes. 

The Angle of Fall, w, is the angle made by the tangent to the 
trajectory with the line of sight at the point of fall. 

The Striking Angle, w', is the angle made by the tangent to the 
trajectory with the horizontal at the point of fall. 

Initial Velocity is the velocity of the projectile at the muzzle. 
Remaining Velocity is the velocity of the projectile at any point 

of the trajectory. 
Drift, leI', is the departure of the projectile from the plane of 

fire, due to the resistance of the air and the rotation of the pro­
jectile. 

Direct Fire is with high velocities, and angles of elevation not 
exceeding 20 degrees. 

Curved Fire is with low velocities, and angles of elevation not 
exceeding 30 degrees. 

High Angle Fire is with angles of elevation exceeding 30 
degrees. 

206. The Motion of an Oblong Projectile.-The projectile 
as it issues from the muzzle of the gun has impressed upon it a 
motion of translation and a motion of rotation about its longer 
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axis. The guns of our service are rifled with a fight handed twist, 
and the rotation of the projectile is therefore from left to right . 
when regarded from the rear. Mter leaving the piece the pro­
jectile is a free body acted upon by two extraneous forces, gravity 
and the resistance of the air. 

When the projectile first issues from the piece, its longer axis 
is tangent to the trajectory. The resistance of the air acts along 
this tangent, and is at first directly opposed to the motion of 
translation of the projectile. 

The longer axis of the projectile being a stable axis of rotation 
tends to remain parallel to itself during the passage of the pro­
jectile through the air, but the tangent to the trajectory changes 
its inclination, owing to the action of gravity. The resistance of 
the air acting always in the direction of the tangent, thus becomes 
inclined to the longer axis of the projectile, and in modern pro­
jectilcs its resultant intersects the longer axis at a point in front 
of the center of gravity. 

In Fig. 157, G being the centcr of gravity, and R the resultant 

R 

FIG. 157. 

resistance of the air, this resultant acts with a lever arm l, and 
tends to rotate the projectile about a shorter axis through G per­
pendicular to the plane of fire. 

The resultant effect of the resistance of the air on the rotating 
projectile is a precessional movement of the point of the projeetile 
to the right of the plane of fire. Mter the initial displacement of 
the point to the right the direction of the resultant resistance 
changes slightly to the left with respect to the axis of the pro­
jectile, and produces a corresponding change in the direction of the 
precession, which diverts the point of the projectile slightly down­
ward. 

If the BIght of the projectile were continued long enough 
the point would describe a curve around the tangent to the 
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trajectory; but actually the flight of the projectile is never 
Idng enough to permit , more ' than a small part of this motion 
to occur. 

The precession of the point is greater as the initial energy of 
rotation is less. It is therefore necessary to give to the projectile 
sufficient energy of rotation to make the divergence of the point 
small. Otherwise the precessional effect may be sufficient to cause 
the projectile to tumble. 

When the point of the projectile leaves the plane of fire the 
side of the projectile is presented obliquely to the action of the 
resistance of the air, and a pressure is produced by which the pro­
jectile is forced bodily to the right out of the plane of fire. It 
is to this movement that the greater part of the deviation of 
the projectile is due. 

DRIFT.-The departure of the projectile from the plane of 
fire, due to the causes above considered, is called drift. 

237. Form of Trajectory.-It may be shown analytically that 
the drift of the projectile increases more rapidly than the range. 
The trajectory is therefore a curve of double curvature, convex 
to the plane of fire. 

The trajectory ordinarily considered is the projection of the 
actual curve upon the vertical plane of fire. This projection so 
nearly agrees with the actual trajectory that the results obtained 
are practically correct; and the advantage of considering it, 
instead of the actual curve, is that we need consider only that 
component of the resistance of the air which acts alorig the longer 
axis of the projectile and which is directly opposed to the motion 
of translation. 

Determination of the Resistance of the Air.-The relation 
between the velocity of a projectile and the resistance opposed 
to its motion by the air has been the subject of numerous experi­
ments. 

In the usual method of determining this relation the velocity 
of the projectile is measured at two points in the trajectory. 
The points are selected at such a distance apart that the path 
of the projectile between them may be considered a right line, 
apd the action of gravity may be neglected. The resistance of 
the air is then regarded as the only force acting to retard the 
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projectile, and is considered as constant over the path between 
the two points. 

The loss of energy in the projectile, due to the loss of velocity, 
is the measure of the effect of the resistance of the air, and is 
equal to the product of the resistance into the path. The resist­
ance thus obtained is the mean resistance, and corresponds to 
the mean of the two measured velocities. 

EARLY EXPERIMENTS.-The first experiments were those of 
Robins in 1742. For the measurement of velocities he used the 
ballistic pendulum. His conclusions were, that up to a velocity 
of 1100 foot seconds the resistance is proportional to the square 
of the velocity; beyond 1100 f. s. the resistance is nearly three 
times as great as if calculated by the law of the lower velocities. 

Hutton in 1790, with the improved ballistic pendulum, made 
numerous experiments with large projectiles. His conclusions 
were that the resistance increases more rapidly than the square 
of the velocity for low velocities, and for higher velocities that 
it varies nearly as the square. 

General Didion made a series of experiments at Metz in 1840 
with spherical projectiles of varying weights. His conclusions 

. were that the resistance varied as an expression of the general 
form a(v2 +bv3 ), a and b being constants. This formula held for 
low velocities only. 

Experiments were again made at l\Ietz in 1857. Electro-ballis­
tic instruments were now used for the measurement of velocities. 
The conclusions from these experiments were that th~ resistance 
varies as the cube of the velocity. Experiments by Prof. Helie 
at Gavre in 1861 gave practically the same results. 

The experiments above described were made principally with 
spherical projectiles. The difference in the nature of the resistance 
experienced by oblong and spherical projectiles, together with the 
difference in the velocities, then and later, may account for the 
wide difference in the results obtained from these and from later 
experiments. 

LATER EXPERIMENTs.-The Rev. Francis Bashforth made 
exhaustive experiments in England, in 1865 and again in 1880, 
using comparatively modern projectiles and accurate ballistic 
instruments. His conclusions were, that for velocities between 
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900 and 1100 f. s. the resistance varied as the sixth power of 
the velocity; between 1100 and 1350 f. s., as the cube of the 
velocity; and above 1350 f. s., as the square of the velocity. 

The most recent experiments are those made by Krupp in 
1881 with modem guns, projectiles, and velocities. The results of 
these experiments were used by General Mayevski in the deduc­
tion of the formulas for the resistance of the air which are now 
generally used. 

CONCLUSIONS FROM THE EXPERIMENTs.-The experiments have 
shown that the resistance of the air varies with the form of the 
projectile, with its area of cross section, with the velocity of the 
projectile, and with the density of the air. Considering the form 
of the projectile the resistance is affected principally by the shape 
of the head, and by the configuration at the junction of the head 
and body. The ogival head encounters less resistance than any 
other form of head. The resistance was found to increase directly 
with the area of cross section of the projectile, and directly with 
the density of the air. 

208. Mayevski's Formulas for Resistance of the Air.-In 
expressing the relation between the resistance of the air and the 
velocity of the projectile, General Mayevski placed the retarda­
tion, as determined in Krupp's experiments, equal to an expres­
sion which involves, together with an unknown power of the 
velocity, quantities whose values are dependent on the weight, 
form, and cross section of the projectile, and on the density of 
the air. 

Calling p the resistance of the air, 
w the weight of the projectile in pounds, 
g the acceleration of gravity, 

the retardation is pgjw 
Representing by R the retardation of the projectile, make 

R=pg/w=vnA/C (i) 

in which A is a constant and n some power of the velocity, both 
to be determined from the experiments. 

THE BALLISTIC COEFFICIENT, ,C.-The quantity C in the equa­
tion was given a value 
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in which (Jl is the standard density of the air, 
(J the density at the time of the experiment, 
c the coefficient of form, 
d the diameter of the projectile in' inches, 
w the weight of the projectile in pounds. 
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By the introduction of this coefficient into the value of the retarda­
tion, the effect of variations in weight, form, and cross section 
of the projectile, and in the density of the air, may be considered. 

The coefficient of form c was taken as unity for the standard 
projectiles. For projectiles of a form that offers greater resistance 
the value of c will be greater than unity. Examination of equa­
tion (1) shows that as c increases, and C decreases, the retardation 
is increased; a result also obtained by increase in d or (J, that is 
in the cross section of the projectile or in the density of the air; 
while by an increase in w, C is increased and the retardation is 
diminished. The coefficient C is therefore the measure of the bal­
listic efficiency of the projectile. 

The value of c for all projeC'tiles in our service is usually taken 
as unity. 

The density of the air is a function of the temperature and 
of the atmospheric pressure. The values of (JI/ (J for different 
atmospheric pressures and temperatures are found in Table VI 
of the ballistic tables. 

Mayevski determined, from Krupp's experiments, values for n 
and A for different velocities as follows. 

Velocities, f. s . n log A Velocities, f. s. I-~ log A 

Above 2600 1.55 3.6090480 1230 to 970 14.8018712 
2600 to 1800 1.7 3.09(;1978 970 to 790 3 8 .7734430 
1800 to 1370 2 4.1192596 Below 790 2 5 .6698914 
1370 to 1230 3 8.9809023 

209. Trajectory in Air. Ballistic Formulas.-In the deduc­
tion of the ballistic formulas the trajectory is considered as a 
plane curve. The line of sight is taken as horizontal. The angle 
of elevation is taken as the angle of departure, and the striking 
angle becomes the angle of fall. 

The trajectory so considered is called The Horizontal Tra]'ec­
tory. 
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Considering the motion of translation only, and that the 
resistance of the air is directly opposed to this motion, let, Fig. 158, 

~~~ 
~ ~ 
::--=::'-==':'::~':===:---=~----X--,;;-------------------..: 

FIG. 158. 

R be the retardation due to the resistance of the air, its 
value being given by equation (1); 

V, the initial velocity; 
v, the velocity at any point of the trajectory whose co­

ordinates are x and y; 
VI, the component of v in the direction of x; 
cp, the angle made with the horizontal by the tangent to the 

trajectory at the origin, or the angle of departure; 
(), the value of cp for any other point of the trajectory; 
w, the angle of fall; 

x and y, the co-ordinates of any point of the trajectory, in feet; 
X, the whole range, in feet. 

EQUATIONS OF MOTION.-The only forces acting on the pro­
jectile after it leaves the piece are the resistance of the air and 
gravity. 

The resistance of the air is directly opposed to the motion of the 
projectile, and continually retards it. Gravity retards the pro­
jectile in the ascending portion of the trajectory, while it acceler­
ates it in the descending portion. 

Considering the ascending portion of the trajectory, the v~locity 
in the direction of x is 

v cos ()=vl=dx/dt dx=v1dt (2) 

The velocity in the direction of y is 

v sin ()=Vl tan ()=dy/dt dY=Vl tan Odt (3) 

The retardation in the direction of y is therefore 

-d(Vl tan ())/dt=g+R sin () (4) 
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Since gravity has no component in a horizontal direction. the 
retardation in the direction of x is 

-dvt/dt=R cos (J dt= -dVI/R cos (J (5) 

Substituting this value of dt in (2), (3), and (4), and performing 
the differentiation indicated in (4), d tan (J being dfJ/cos2(J, we 
obtain 

dx = - vIdvt/R cos (J 

dy = - VI tan (J dvt/R cos 0 

dfJ=g cos (J dvt/Rvi 

(6) 

(7) 

(8) 

The four equations (5) to (8) are the differential equations of 
motion of the projectile, and if they could be integrated directly 
they would give the values of t, x, y, and (J for any point of the 
trajectory. But as they are expressed in terms of R, v, and (J, 

three independent variables, the direct integration is impossible. 
The value of R is given by Mayevski's formulas, R=Avn/C, 

n representing the exponent of V for any particular velocity. Sub­
stituting this value of R in (6), the equation may, by means of 
the felation v cos (J = VI, be put in the form 

(9) 

The second member would be an exact integral were it not 
for the factor cosn-1(J. In direct fire cos (J differs but little from 
unity, and it might be taken as unity without appreciable error. 
cosn-1(J would then be unity and the expression would be integrable. 
A closer approximation, however, as shown by Siacci, results 
from making 

cosn-l(J = cosn-2cjJ 

Making this substitution equation (9) may be brought by 
reduction, see foot note, to the form 

dx= _ C d(Vl sec cjJ) 
A (VI sec cjJ)n-1 

cosn-2rp= 1/secn - 2 rp=sec if>/secn-1cp 
if> is constant, therefore sec cf>dV1 = d( V, sec </». 

(10) 
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VI sec 1> = V cos 0/ cos 1> = U 

VI sec 1>= V cos 1>/COS 1>= V 

Making these substitutions in equation (10) and integrating 
between the limits u and V we obtain 

c [1 1 ] 
X= (n-..,)Ji un-2 - Vn-2 

(11) 

And similarly equations (5) and (8) may be brought to the forms 

elI 
t= (n-l)A cos ¢[Un--l - vn-I] 

qC) [1 IJ 
tan ¢ - tan 0 nA cos2 ¢ un - Vn 

210. To simplify equations (11) to (13), make 

1 
S(u) = (n-2)Au n- 2 + Q 

1 
S(V) = (n-2)AVn 2 + Q 

T(u) = (n-15Aun- I + Q' 

leu) = __ 2g + Q" 
nAun 

The reason for the addition of the constants will appear. 

(12) 

(13) 

(14) 

Making these substitutions, equations (11) to (13) beconw 

x=C1S(u)-S(V)1 

C 
t= cos 1>l T (u)-T(V)} 

C 
tan e = tan 1>- 2 cos2 ¢ {l(u) - I(V)} 

Making in the last equation tan O=dy/dx, and making 

At 1,\=_!jl(U)dU __ ,U, A un-1 

(15) 

(16) 

(17) 

(14') 
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equatlttn (17) may be brought to form, see foot note, 

y C {A(u)-A(V) } 
-X=tancp-2cos2cp S(u)-S(V) leV) (18) 

Equations (15) to (18), with the equations 

cos () 
u=v--cos cp ~19) 

and 
0'1 w 

C=f-a iJCd2 , 
(20) 

are the fundamental equations of Exterior Ballistics, and con­
stitute the method of Siacci, an eminent Italian ballistician. The 
essence of the method lies in the use of u, called by Siacci the 
pseudo velocity, for v, the actual velocity. 

In all problems of direct fire, since the difference between cp 
and () is not great, u may be used for v with sufficient accuracy. 
In problems in curved and high angle fire, and in direct fire when 
greater accuracy is desired, we pass from the value of u to the 
value of v by means of equation (19). It will be seen from this 
equation that, since u cos cp=v cos (), u is the component of v 
parallel to the line of departure. 

The Ballistic Coefficient.-The ballistic coefficient, like the 
force coefficient in the interior ballistic formulas, affords a con­
venient means of introducing into the exterior ballistic formulas 
any correction necessary to make the formulas applicable to con­
ditions differing from the conditions for which the formulas were 
deduced. 

From (17), 

dy=tan eft dX-
2 

c" ",{I(u)dx-I(V)dxl) 
cos 't' 

, (I7a) 

From (10), and v, sec rp=u, dx=Cdu/Aun-' 

Substitute this value in the second term of the second member of (I7a). 
Integrate the equation between the limits u and V with the help of (14'). and 
divide through by x. 

!L=tan rp _ _ C_._{ C{A(u)-A(V)! -I(V)} 
x ~ cos" rp x 

Substitute for C/x its value from (15). 
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For general use with the fonnulas of exterior ballistics 
Mayevski's value for C, page 362, is changed by the introduction 
of two quantities, f and p, so that the value of the ballistic 
coefficient takes the fonn written in equation (20). 

f is called the altitude factor, and brings into consideration the 
diminution in the density of the air as the altitude of the tra­
jectory increases. The value of f is greater than unity and de­
pends upon the mean altitude of the trajectory, which is taken 
as two-thirds of the maximum altitude. 

p is an integrating factor, and corrects for the error due to cer­
tain assumptions made in deducing the primary equations, when . 
these equations are applied to a trajectory whose curvature. is 
considerable. p is approximately unity in all problems of direct 
fire. The product pc is called the coefficient of reduction. 

When in the statements of ballistic problems the data required 
to determine fJd fJ, P or c is not given, the value unity is assumed 
jar the factor. f is also assumed as unity unless a correction for 
altitude is desired. When all these factors are unity the ballistio 
coefficient becomes 

C=w/dJ 

2 I I. The Functions.-The functional expressions in equations 
(15) to (18) are called: S(u) the space function, T(u) the time 
function, leu) the inclination function, and A(u) the altitude 
function. Their values are given by the equations (14) and (14'). 
The values of these functions for values of u from 3600 to 100 
foot seconds have been calculated, and form Table I of the Bal­
listic Tables. 

Since V is a particular value of u the values of the functions 
of V are included in the table as values of the functions of u. 
For example, to find the value of S(V), V being given, enter 
the table with the value of V as a value of u and take out the 
corresponding value of S(u). 

The quantities Q, Of, and Q", in the values of the functions, 
equations (14), are arbitrary constants; and the purpose of includ­
ing them is to provide a means for avoiding abrupt changes in 
the tables at those points where in Mayevski's formulas the values 
of A and n change. 
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CALCULATION OF THE FUNCTIONS.-The method of employing 
the constants in forming the tables is best shown by an example. 
The value of the S function is, equation (14), 

1 
S(u) = (n-2)Aun - 2+ Q 

For va~ues of v greater than 2600 f. s., we have from May­
evski's formulas, n = 1.55. Therefore for a velocity greater than 
2600 f. s. 

U°.45 1 
S(u) = ---~. -+Q= --_('uO.45 +Ql) 

0.45A1 0.45A1 

In order to avoid the use of large numbers Table I of the lat­
est ballistic tables, published in 1900, is so constructed that the 
S, A, and T functions reduce to zero for u=3600. leu) reduces 
te> zero for U= 00. We have then for S(u), whenu=3600 

and therefore 
Ql = - (3600)0.46 

For any other value of u down to 2600 

1 --0.45 
S(u)=--(3600 -UO.45)=K-K'uO.4~ (21) 

0.45A1 

For velocities between 2600 and 1800 f. s., n=1.7, and 

1 
S(u) = - 0.3A2 (UO.3 +Q2) 

Qz must have such a value as to make the value of S(u) for 
u=2600 the same as the value determined from equation (21) 
with this value of u. Therefore 

1 --0.3 --'0.45 
---(2600 +Q2)=K-K'2600 

0.3A2 

from which the value of Q2 ~can be determined. 
The same process is followed at each change in the values of 

nand A. 
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When n = 2 equation (11) becomes indeterminate and the 
values of the functions cannot be determined as above; but 
making n=2 in eqQation (10) and integrating we obtain 

C 
X= - A (lo.ge u-Iog, V) 

S(u) becomes in this case 

S(U)=_lo~u+Q 

INTERPOLATION IN TABLE I.-This is effected by the ordinary 
rules of propo.rtional parts. The difference between successive 
values of u varies from unity in one part of the table to 2, 5, and 
10 in o.ther parts. This difference must be carefully noted in 
interpolating. 

212. Formulas for the Whole Range.-Designate the whole 
range, Fig. 158, by X, the corresponding time of flight by T, the 
angle of fall (considered positive for convenience) by w, and use the 
subscript OJ to designate the values of u and v at the point of 
fall. 

At the point of fall y = 0 and () = -: w; and after combining 
equations (17) and (18) to eliminate I(V) from (17), equations (15) 
to (19) become, respectively, 

X =C!SCuw)-S(V)1 

C 
T= cos 1>!T(uw)-T(V)1 

C r A(Uw)-A(V)} 
tan w=2 C0.821> 1 I(uw)- S(u,,J-S(V) 

• 2 "'=C r A(u",)-AeV) ICV) 1 
sm 't' 1 S(Uw)-S(V) j 

Uw = Vw cos w/cos 1> 

(22) 

(23) 

(24) 

. (25) 

(26) 

At the summit of the trajectory (}=o. Using the subscript 0 

to designate the summit, equations (17) and (19) become, after 
reduction, 
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Combining (27) and (25) we have 

l( ) = A(uw)~A(V) 
U

o S(u .. )-S(V) 

Therefore (24) and (25) become 

C 
tan W=2 2 A- jl(u",)-I(uoH cos 't' 

sin 2 cp=Cjl(uo)-I(V)1 
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(29) 

(30) 

(31) 

213. The Ballistic Elements.-The quantities C, u, V, cp~ 
0, w, T, and X in the previous equations are called the ballistic 
elements. When referring to the end of the range they are 
written as capitals, or with the sUbscript w' For any other point 
of the trajectory they are written as small letters, with suitable 
sUbscript if desired. The subscript 0 always refers to the summit 
of the traject?ry. The equations, by reason of Siacci's assump­
tion for the value of cosn-10, express the relations existing between 
these elements in direct fire only. 

When three or more of the elements are given the others may 
be determined. 

The Rigidity of the Trajectory.-According to the principle 
of the rigidity of the trajectory, which is mathematically demon­
strated, the relations existing between the trajectory and the 
chord representing the rang3 are sensibly the same whether the 
chord be horizontal or inclinec! to the horizon, provided that the 
fJ,uadrant angle of departure and the angle of position are small 
or that' the difference between them is small. That is to say 
t,hat, considering cp + e and e as small, in Fig. 156, if the trajec­
tory bdf and its chord bf were revolved about the pointb until bt 
were horizontal, the relation of the trajectory to bt would not 
change. A trajectory calculated for a horizontal range equal to bt 
would then answer as the trajeetory for the actual inclined range bt. 

Therefore when the quadrant angle of departure,cp+ e, is 
small we may consider bf, or any other chord of the trajectory, 
as a horizontal range; and we may apply to the trajectory sub­
tended by the chord theJormulas deduced for a horizontal range. 

If how~ver the quadrant angle of departure is large, the prin-
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eiple of the rigidity of the trajectory applies only when the angle 
of position is also large, that is when ¢+ e does not differ much 
from e. Therefore in any complete high angle trajectory for a 
horizontal range the principle of the rigidity of the trajectory 
applies only to a part of the trajectory near the origin. This 
part may be treated as a horizontal range whose angle of departure 
is the difference between the quadrant angle of departure of the 
horizontal trajectory and the angle of position. 

When the difference between ¢+ e and e is small, ¢ must 
be small. It is therefore evident that, in direct fire, the principle 
of the rigidity of the trajectory applies whenever the angle of . 
departure is small. 

This principle eIlli.bles us to use the elements calculated for a 
horizontal range when firing at objects situated above or below 
the level of the gun. 

214. Use of the Formulas.-The method of using the formulas 
may best be shown by considering a problem. 

Problem I.-What is the time of flight of a 3-inch projectile 
weighing 15 lbs., for a range of 2000 yards; muzzle velocity, 1700 
f. s.? 

The given data are C=15/ 9, V=1700, and X =6000, the 
range being always taken in feet . T is required. 

These formulas apply: 

C 
T= cos ¢{T(uw)- T(V)J 

sin 2¢=C {~~~:~=:(~1 I(V)} 

Take the T, S, A, and I functions of V from Table 1. 
Determine S(uw ) from (22). 

(23) 

(25) 

(22) 

Find Uw from Table I, and take from the Table T(u.,) and 
A(u .. ). 

Find ¢ from (25). 
Find T, required, from (23). Ans. T=4.48 seconds. 
215. Secondary Functions.-The most important problems in 

gunnery may be solved by means of equations (22) to (31) and 
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ballistic Table I, but some of the solutions are indirect and ten­
tative and therefore very laborious. The processes of solution 
have been greatly abbreviated and the labor greatly reduced 
by the introduction of secondary functions, whose values, for all 
the requirements of modern gunnery, have been calculated and 
collected in Table II of the ballistic tables. 

The development of the science of exterior ballistics to its 
present accuracy and comparative simplicity is principally due 
to Colonel James M. Ingalls, U. S. Anny, whose interior ballistics 
are set . forth in Chapter III. 

From equation (15) we have 

S(u) =x/C+S(V) 

and substituting the values of S(u) and S(V), see (14), 

1 x 1 
(n- 2)Aun 2 = C + (n- 2)A Vn-2 

From this equation it is apparent that the value of the pseudo ' 
velocity u, at any point, is a function of x/C and V only, and is 
independent of the height of the point in the trajectory. 

Make 
z=x/C Z=X/C 

It will be seen in equations (16), (17), and (1~) that t, 0, and y 
are functions of u and therefore also functions of z and of V. 

The secondary functions, whose values are here' given, are all 
functions of Z and V, and are tabulated with Z and Vas arguments. 

A =A(u)-A(V) I(V) 
S(u)-S(V) 

B =I(u)- A(u)-A(V) 
S(u)-S(V) 

A' =A+B=I(u)-I(V) 

T' = T(u) - T(V) 

B'=B/A 

(32) 

'rhe subscripts are dropped in these expressions since they 
only serve to indicate particular values of u, while the table 
contains the values of A, B, etc., for all the values of u. 
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The table also contains, in the column u, the values of u for 
all values of Z and V. 

Equations (23), (24), and (25) may now be put, by reduction, 
into the following exceedingly simple forms. 

T =CT' /cos cp 

sin 2 cp=AC 

tan w = BC /2 cos2 cp = B' tan cp 

Equations (17) and (18) may also be put in the forms 

tan cp 
tanO=A-(A-a') 

_ x tan CP(A ) y- A -a 

(33) 

(34) 

(35) 

(36) 

(37) 

In these equations a and a' are the values of A and A' corre­
sponding to z = x/C for-the particular point of the trajectory con­
sidered, while A and A' are the values corresponding to Z =X/C 
for the whole range. 

216. At the summit tan 0 reduces to zero; and we obtain from 
equation (36), writing ao'for a' at the summit, . 

ao'=A (38) 

Equation (37) then becomes 

Xo tan cP , 
Yo= , (ao -aD) , ao (38') 

From the third equation (32) we have for the summit 
bo=ao' -ao. With this relation and the relation zo=xo/C, and 
making 

ao" = bozo/ ao' 

equation (38') reduces to the form 

yo=ao"C tan cp 

yo representing the maximum ordinate. 

(39) 

To obtain ao" for use in this equation we find in Table II, 
in the A' column,. the value of A as determined for the whole 
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range. With this value as A' and th~ given value of V we find 
ao" in the A" column. ' 

Write Z =X/C (40) 

v=u cos 1>/cos (j (41) 

a=' f 31 '!!!- (42) 
3 cd2 

and .. 

. 1 [3.79239] C2D' /cos3 1> (~e, ac, oa,st, guns) DrIft (yds.) = _ (43) 
[3.92428] C2D' /cos3 1> (field guns) 

which is Mayevski's formula for drift, abbreviated for tabulation 
by Colonel Ingalls. The values of D' are found in Table II. 

We have in the equations (33) to (43) the principal fOrlIlulas 
required for the solution of nearly all the problems of direct fire. 

While the fOrlIlulas apply strictly to direct fire only, where the 
values of 1> and 0 are such as to perlIlit the use of Siacci's value 
of cosn-10 without appreciable error, they give sufficiently accu- ' 
rate results for curved fire, and they are used for curved fire as 
well. 

They are made applicable to high angle fire by giving to the 
coefficient c in the ballistic coefficient such values as will make the 
results obtained from the fOrlIlulas agree with the results obtained 
in actual firings. For the low velocities used in mortars and 
howitzers the fOrlIlulas are simplified, as will later be shown. 

Ballistic Tables.-The Ballistic Tables, which are issued by 
the War Department, consist of three volumes,entitled: Ar­
tillery Circ:ular M, Series of 1893 (printed in 1900), Supplement to 
Artillery Circular M (1903), and Supplement No. 93 to Artillery Cir­
cular M (1904). The supplements extend Tables II, IV, and V of 
Artillery Circular M. 

In addition there has appeared a simplification of Table IV in 
the Journal of the United States Artillery, number for January and 
February, 1905. 

Artillery Notes, No. 935, issued by the War Department, 1905, 
contains a corrected table to replace Table VI of Artillery Circular 
M, the latter table having been found to be based on incorrect data. 

The ballistic fOrlIlulas are found assembled on page VIII of the 
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first book of tables, Artillery Circular M, so that the books of 
tables contain all that is needed for the solution of most of the 
problems of gunnery. 

Under the heading Formulas to be used with Toole II, on page 
VIn of Artillery Circular M, appears 'the formula 

S(u) =Z+S(v) 

which is another form of 

x =CjS(u)-S(V)l 

This formula, which is sometimes convenient to use, requires the 
,use of Table 1. 

To understand the additional formulas under this heading on 
, page VIII of the ballistic tables it is only necessary to know that 

E represents the angle of position of a target, not on the same level 
with the gun, whose horizontal distance from the gun is x, and 

, that cf>x is the angle of departure for the horizontal range x. a is 
the particular value of A that corresponds to the value of x. 

These fommlas express the relations that exist between 'cf>, E, 

and cf>",. They are used to determine the quadrant angle of elevation 
for a target situated so much above or below the level of the gun 
and, at such a range that the principle of the rigidity of the trajectory 
cannot be applied. 

EXTERIOR BALLISTIC FORMULAS. 

The formulas required in the solutions of most ballistic prob­
lems are here assembled for convenience. There are included the' 
formulas already deduced and others which are deduced later. 

DIRECT FIRE. 

V>825 f. s. cf><20o I, 
G=f~l~ (42) Z=X/G (40) 

~ciP 

sin 2 cf>=AC (34) T = CT' /cos cf> (33) 

tan (j) = B' tan cf> (35) v = u cos cf>/cos () (41) 

y=x tan cf> (A-a)/A (37) ao' =A = sin 2 cf>/O (38) 

,tan (}=tan cf> (A-a')/A (36) Yo = ao" a tan cf> (39) 
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CORRECTION FOR ALTITUDE. 

log (log I) = log Yo+5.01765 (44) 

DANGER SPACE AND DANGER RANGE. 

(A-a)z=2y cos2 1>/C2 (51) eo 
(53) 1=/0+--(/1-/0) eO+el 

JX=X-x (54) ao' ao" = 2 yo/C2 (55) 

DRIFT. 

Seacoast Guns. Drift (yds.) - [3. 79239]C'D' / cos' qI } 

Field Guns. Drift (yds.) = [3 .92428]C2D' /cos3 rp 
(43) 

WIND EFFECT-RANGE • 

.,dV = W p cos cf> (45) V'=V±.,dV (46) 

sin.,d¢ =W p sin 1>iV' (47) ¢' = ¢"T Jrp (48), 

.,dX (ft.) =X' ~ (X ± W pT) (49) 

WIND EFFECT-DEVIATION FOR 8, 10, 12-INCH PROJECTILES. 

Deviation (yds.) =[7.00000] SinaW(m.p.h.)(33~~~c&ds.)r (50) 

CURVED FIRE. 

Always correct tor altitude. 

For V>825 f. s. and 1>,20° to 30°, use formulas for direct fire. 

Use the following formulas when 

V <825 f. s. 1><30° 

(42)z=x/a (40) 

log (log f)=log yo+5.01765 (44) 

sin 21>=[5.80618]AC/V2 (56) tan w=B' tan q;, (35) 

v'" = [3.09691]u", cos 1> V /cos w (57) 

T = [2.90309] CT'IV cos 1> (58) 



378 ORDNANCE AND GUNNERY. 

mGH ANGLE FIRE. 

1»300 

Always correct lor aUitude. 

When the coefficient of reduction c is known use Table IV. 
When the coefficient of reduction is not known use the formulas 

for direct fire· and Table II, or Table I in those problems for 
which Table II is not sufficiently extended. 

CURVATURE · OF EARTH. 

Curvature (ft.) = [7.33289}X2 (yds.) (59) 

217. Interpolation in Table n.-Exact formulas for inter­
polation in Table II are deduced and explained in the appendix 
to this chapter. These formulas greatly facilitate the solution of 
ballistic problems; A thorough understanding, of the interpola­
tion formulas, and facility in their use, shou~d be acquired before 
proceeding further. These formulas, which Ihe here written, will 
be used in place of the interpolation formulas given on page VIII 
of the ballistic tables, as the latter formulas are approximate ' only~ 

Double Interpolation Formu1as~Ballistic Table ll . . 

I = non-tabular value of any function corresponding to the non, 
tabular values V and Z. 

lo=tabular value of function corresponding to tabular values Vo 
. and Zo always next less than V and Z. \ ., ' 

h = difference between velocities given in caption of table. 
Jvo and Jzo = tabular differences for 10. 
JVl = tabular difference next following Jvo in same table. 
I ~:; ~~ indicates that function decreases as V increases, and increases 

oe.s Z increases. ' 
Use the following formulas for the functions A, A', B, T', log\ 

G', .and D' throughout the table. They also apply for some values. 
of the functions A" and log B' when V> 2500. 

-v ' Z-Zo V-VoZ-Zo V- Vo 
I~+g=/o+ 100 Jzo--h-Jvo- 100 '-h-(JVl-dvo) 
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( 
V- Vo ) /- /0- -h-Jvo 

Z=Zo+ V_VoX100 
Jzo- (JVl - JVo)-h-

Use the following formulas for the functions A" and log B' 
when V <2500, and for some values beyond that point. 

+v Z~Zo V-Vo Z-Zo V-Vo 
1~+zl=/o+~Jzo+-h-Jvo+----WO·-h-(JVl-JVO) 

( 
Z-Zo ) " /- /0+ --Jzo , 100 

V=Vo+ Z_ZoXh 
Jvo+ (JV1- Jvo)lOO 

(
V - Vo ) 

f- /0+ -h-Jvo 

Z=Zo+ v- Vo XlOO 
Jzo+ (JVl - JVo)-h-

Use the following fommlas for the function u. ' 

(/0 + V~VoJvo)_f 
Z=Zo+ V_VoX100 

Jzo+ (Jvo- JV1)-h-

Inspect the tables to determine how the function varies with V 
and Z, and select the proper group of formulas. 
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Exercise great care in the use of the plus and minus signs. 
As the numbers in the difference columns of the table are 

written as whole numbers we must, when using the interpolation 
formulas, treat the tabular values of the functions as whole num­
bers, and afterwards put the decimal point where it belongs. 

Regarding the interpolation formulas we will note that the pro­
portional parts of the differences Jzo and Jvo are always applied 
to the tabular value of the function, 10, with a sign indicated by 
the manner of variation of the function with Z and V respectively; 
positive if the function is increasing, negative for a decreasing 
function. The sign of the last term of the I formulas is positive if 
the signs of the preceding terms are similar, and negative if they 
are dissimilar. 

In the formulas for V and Z the fractional coefficients of hand 
V- Vo Z-Zo 

100 are equal respectively to --h- and -WO. These coefficients 

will always indicate by their values whether we are working with 
the proper tabular values. Numerator and denominator 01 the 
lraction should always be positive, and the value 01 the fraction less 
than t~nity. 

218. The Solution of Pro blems.-With the ballistic formulas 
and the tables, the solutions of the problems of gunnery become 
very simple. We will remember that all the functions in Table II 
are functions of V and of Z =XjC, the arguments of the table. 
Therefore, given any two of the three quantities, V, Z, and a value 
of a function, the third may be determined from the table, and 
also the corresponding value of any other function in the table. 
For instance, suppose V and A' are given and the corresponding 
values of A", log B' and T' are required. With V and A' we may , 
obtain Z from the table, and with V and Z we obtain A", log B' 
and T'. 

Inspecting the formulas, pages 376 and 377, we select those that 
contain the given quantities, and such other formulas as, with 
Table II, will enable us to pass to the formula containing the 
required quantity. 

It must be remembered that in the formulas the large letters 
represent values of the quantities for the whole range, or complete 
horizontal trajectory; while the small letters represent values of 
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the same quantities fqr particular points of the trajectory. In the 
tables all these values are gathered in columns headed with the 
large letters, which are thus used in a general sense. 

In what follows, either in general discusEions or when demon­
strating _ the use of the tables, the large letters will -be used. 

To show the advantages derived from the use of Table II with 
the abbreviated formulas, let us consider the problem whose solu­
tion by means of Table I has been indicated on page 372. 

219. Problem I.-What is the time of flight of a 3-inch pro­
jectile weighing 15 lbs., for a range of 2000 yards; muzzle velocity, 
1700 feet? 

C=15j9, V=1700, and X=6000 are given. T is required. 

These formulas apply: T = CT' sec 1> 

Determine Z from (40). 

sin 2 1>=AC 

Z=XjC 

With Z and V take A and T' from Table II. 
Determine 1> from (34). 

(33) 

(34) 

(40) 

Determine T from (33). Ans. T = 4.48 seconds. 
Compare this with the process indicated on page 372. 
To show the most convenient method of performing the work, 

the solution of a problem is here given in full. 
220. Problem 2.-A 575 lb. projectile is fired from a 10-inch 

gun at a target 8000 yds. distant; muzzle velocity, 2540 f. s. As­
suming the atmospheric conditions as normal, determine the angle 
of elevation required and the other ballistic elements. 

No data being given for the determination of /Jd/J, and the 
correction for altitude not being required, the value C=wjd2 is 
taken for the ballistic coefficient. 

log w 2.75967 
2 log d 2 .00000 

log C 0.75967 
Z=XjO log X 4.38021 

log Z 3.62054 
. Z=4173 .9 
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To find the angle of departure, use sin 2 1>=AC. 
From Table II, with V = 2540 and Z = 4174, 

A= (0.03054)+.74X107- AX243- .3XlO=0.03033 

The inclusion of the number in parentheses is to indicate that 
in applying the corrections this number is treated as a whole 
number. 

log A 2.48187 
log C 0.75967 

log sin 2 1> i .24154 2 1>= 10° 2'.6 
1>= 5° l' 

1>, after being accurately determined, is used to the nearest 
minute only. 

To find the time of flight, use T = CT'sec 1>. 
From Table II, with V and Z, 

T' =(2.145)+ .74X68- AX89- .3X3=2.1588 
log T' 0 . 33421 
log C 0 . 75967 

1.09388 
log cos 1> i . 99833 

log T 1 .09555 T = 12 . 46 seconds 

To find the angle of fall, use tan w = B' tan 1>. 
From Table II, with V and Z, (JVl - ,dvo) being negative, 

log B' = (0.1513) + .74X38- AX12+ .3=0.15366 
log B' Q. 15366 

log tan 1> 2 .94340 

log tan w 1.09706 w='? 8' 
To find the striking velocity, use v = u cos 1> sec e. 

() in this case becomes w. From Table II, with V and Z, 

u=1481- .74X20+ .4X66=1492.6 
log u 3 . 17394 

log cos 1> i . 99833 

3.17227 
Jog cos w 1. 99663 

log v 3.17564 

,- \' . 

v=1498 f. s. 
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It is evident from these values of u and v that no material error 
is made by considering, for this shot, that u = v. 

, To find the maximum ordinate, use yo = ao" C tan ¢. 
As already explained, see equation (39), we find the value of 

ao" in this equation by means of the value A obtained from the 
equation sirt 2 ¢=AC. At the summit, see equation (38), 

ao' =A =sin 2¢jC 

This value of A is therefore the value of A' for the summit. 
Using this value of A in the A' column of Table II, with the given 
value of V, we obtain from the A" column the value of ao". 

The value of A obtained above is 0.03033 
From Table II, with V = 2540 and A' = 0.0303, 

2200 

Z-Zo = 303- (300- .4 X 24) = 71 
100 18-.4 . 
ao" = 1200 + . 71 X 59 = 1241.9 

log ao" 3 . 09409 
log CO. 75967 

log tan ¢ 2 .94340 

log Yo 2.79716 yo=626.8 feet 

221. Problem 3.-Compute the drift for the shot in Problem 2. 
Us~ Mayevski's formula, D (yds.) =[3.79239] C2D' jcos3 ¢. 

V=2540 Z=4174 ¢=5°1' 10gC=0.75967 

From Table II D'=81+.74X5-.4X6=82.3 
log D' 1 .91540 

2 log C 1.51934 
const. log 3 . 79239 

1.22713 
3 log cos ¢ i . 99499 

log D 1.23214 D=17 yards 

222. Correction for Altitude.-The altitude factor f in the bal­
listic coefficient, see equation (42), takes into account the diminution 
in the density of the air as the projectile rises, and it corrects with 
sufficient exactness for the error that arises from the use of the 
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standard density with which Table II is computed. When accu­
racy is desired the altitude factor is calculated and applied to the 
ballisti~ coefficient in all firings at angles greater than about 5 
degrees. 

Under the assumption 01 the mean height 01 the trajectory as two 
thirds 01 the maximum ordinate, the value of the altitude factor is 
given by the equation 

log (log I) = log yo+5 .01765 [44] 

The summ't ordinate is, equation (39), 

Yo = ao" C tan cP 

As C enters the value of yo we must assume, tor an approxi­
mation in the determination of the altitude factor by means of 
equations (39) and (44), the value of C obtained by considering 
the altitude factor as unity. Call this value C1• With C1 com­
pute cP as explained in Problem 2, determine yo from equation (39) 
and 1 from (44). Call these values CPt, yO!. and /to Then applying 
the value /t, thus determined, to the assumed value C1, a new 
value of C, Ce, is obtainE:ld. This value Ce will be close to the true 
value and may usually, with sufficient accuracy for practical pur­
poses, be used as C. If greater accuracy is desired a second deter­
mination (of cP e, yo e, and Ie) is made. The resulting value, Ie, is 
applied to the value C1 first assumed, and the process is repeated 
until there is no material change between the corrected values of 
C1 resulting from the last two operations. The final corrected 
value is then used as C. 

223. Problem 4.-Correct the ballistic coefficient for alt1tude, 
and determine the angle of elevation required in order that a 
1048 lb. projectile fired from the 12 inch rifle with a muzzle velocity 
of 2350 f. S. may strike a target distant 12,000 yds.; the atmos~ 
pheric conditions at the time of firing being barometer 29".5, 
thermometer 67° F., 

d=12 w=1048 X =36,000 V=2350 

The process may be indicated as follows: 

C=/~l ~ Z=X/C Table II, A, ao" 
~ cd2 sin 2cp=Aa 

log (log f) = log Yo + 5.01765 Yo = ao" C tan cP 
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Table VI Jt/J= 1.037 -0.5 (1.037-1.003) = 1.02 

c=l;; 

; , 

log ;hliJ 0.00860 

Consider c = 1 log w 3.02036 
1=1 

3.02896 
log d2 2.15836 

. .. 
log C1 0.87060 (1st approximation) 

. I. 

Z=X/G log X 4.55630 

log Z 3.68570 Z=4849.5 

Table II, A = (0.04589)+ .495 X 146- .5X396- .248X13=0.044601 

While using the table we will take out for future use the value of 
ao'" corresponding to ao' = A = 0.044601. 

With ao' =0.044601, we obtain from the A' column 

2600 

Z-Zo = 446-(447-.5X38) = 783 
100 . 24-.5X2 . 

Note tnat in this operation we have taken a tabular value 
0.0447 for A larger than the given value 0.0446 because the tabular 
value when corrected for the variation in V becomes less than the 
given value. 

sin 2 cp=AO 

yo=ao" C tan cp 

ao" = 1444+ .783X61 =1491.8 

log A 2 . 64934 
log C1 0 .87060 

log sin 2 CPl 1.51994 

log tan CPl 1.23130 
log Cl 0.87060 

log ao" 3.17371 

log YOl 3.27561 

2ch =190 20'.1 
P1 = 90 40' 
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log YOl 3.27561 
log (log f) = log Yo+5.01765 5.01765 

---
log (log h) 2.29326 

logl 0.01965 
log 1 0.87060 

Jog Cc 0.89025 (1st correction) 

With the corrected value of C we repeat the process followed 
after the determination of C1, the first approximation. 

Z=XjC log X 4.55630 
log Cc 0.89025 

log Z 3 . 66605 Z = 4635 

Table II, A= (0.04306)+.35X140- .5X372- .175X12~0.041669 

Take out for future use the value of ao" corresponding to ao' = 
A=0.04167 

2500 

Z-Zo = 416.7- (424- .5X36) = 486 
100 23-.5X2 . 

sin 2 cp=AG 

ao" = 1383 + .486 X 61 = 1412.6 

log A 2.61981 
log Cc 0.89025 

log sin 2 CPc 1.51006 

yo = ao" C tan cP log tan cp c 1. 22088 
log Cc 0.89025 

log ao" 3 .15002 

log YOc 3.26115 
log (log f)=logyo+5.01765 5.01765 

log (log f c) 2 . 27880 

logic 0.01900 
log C1 0.87060 

2 CPc= 18° 53'.0 
CPc= 9° 26'.5 

log Ccc 0.88960 (2d correction) 
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As this value of log Cee does not differ greatly from the value 
log Ce = 0.89025, obtained by the first correction, further correction 
is unnecessary and we will use log Cce as log C in determining the 
angle of departure. 

Z=X/C Table II, A sin 2 ¢ = AC 

log X 4.55630 
log CO. 88960 

log Z 3.66670 Z = 4641. 9 
A = (0.04306) -+- .419 X 140 - .5 X 372 - .21 X 12 = 0.041761 

sin 2 ¢=AC log A 2 .62077 
log CO. 88960 

log sin 2 ¢ I . 51037 2 ¢=18° 53'.8 
¢= 9° 26'.9 

This value of ¢ is practically the same as the value ¢ e pre­
viously obtained. It is obvious therefore that we have carried . 
the correction for altitude sufficiently far. 

224. ANGLE OF DEPARTURE CONSTANT.-When the angle of 
departure ¢ is fixed, instead of the range X as in the last problem, 
the correction for altitude is made and the range found as here 
indicated. ' 

C=f~ ~2 'A=sin 2 ¢/C Table II, ao" yo=ao" C tan ¢ 

log (log f) = log yo+5.01765 X =ZC 

Determine Cl from C=wat/ad2, as in Problem 4 (1st approxima-
tion). 

Find ao' =A from sin 2 ¢=AC 
Find ao" corresponding to ao' from Table II 
Find YOl from yo = ao" C tan ¢ 
Find It from log (log f) = log yo+5.01765 
Find Cc from Cc=hCl (1st correction) 

and proceed in the same way to find Cce or C3e as required. 
Find the range from X = ZC with the final corrected value of C. 
225. The Effect of Wind.-In considering the wind we assume 

that the air moves horizontally, and that the effect on the velocity 
of the projectile is due to the component of the wind in the plane 
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of fire c;mly. We also assume as practically correct that the time 
of flight of the projectile is not influenced by the wind. 

Let W be the veloCity of the wind in foot seconds, 
W p the component of W in the plane of fire, 
a the angle, reckoned from the target, between the direc­

tion of the wind and the plane of fire. 
Then 

W p=;= W cos a. 

Call W p positive for a wind opposed to the projectile, and nega­
tive for a wind with it. 

THE EFFECT ON RANGE. I ngall' 8 Method. -We will assume that 
the effect of the wind component, W p , is simply to increase or 
diminish the resistance encountered by the · projectile; and that 
therefore this resistance, instead of being due to the velocity v, is 
due to the velocity (v± W p). Represent by 11X the correction to 
be applied to the range in a calm to produce the true range, this 
correction being the variation in range, with its sign changed, 
caused by the wind. We may put equations (23) and (22), when 1> 
is small and cos 1> nearly unity, in the following forms, using the 
upper signs when the direction of W p is toward the gun and the. 
lower signs when it is toward the target. 

T(v± W p)=T/C+T(V ± W p) 

odX=C{S(v± Wp)-S(V ± Wp)} -(X±TWp) 

in which T(v± W p) and S(v± W p) ' are the T and S functions in 
Table I. 

Compute the range X and the time of flight T without consider­
ing the wind. Then from the first of the foregoing formulas find 
v± W p, and from the second the desired value of 11X. 

226. Another Method.-Let ob, Fig. 159, represent the initial 
direction of the projectile and its velocity V. Let be represent the 
velocity W p of the wind component in the plane of fire, reversed. 
in direction While the projectile moves from 0 to b the air par­
ticle b moves to the left a distance equal to be. The direction of 
movement of the projectile relative to this particle of air is there­
fore oe, which is also the relative velocity, V', of the projectile. 
cp' is the relative inclination, and 11 1> the relative change in inclina-
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tion. Draw cd perpendicular to ob, and call bd .dV. Then, using 
the upper signs only, 

o 

4V=Wpcos ~ 

V' = V ± JV (nearly) 

V' sin J~~ W p sin p 

d 
L1~ \ 

~~c ~v; 
• I 

~ 
t 

FIG. 159. 

(45) 

(46) 

(47) 

(48) 

Referring to Fig. 160, let b represent the position of the gun, 
and bd the range X in calm air. In the head wind the range is 
reduced to bc. cd is therefore the variation in range due to the 
wind. While the projectile travels from b to c the air particle 
travels from b to a, the distance W pT. ac, or X', is therefore the 
distance that separates the projectile and the air particle at the 

end of the time T; that is, it is the relative range of the projectile 
with respect to the ai~ particle. The relative initial velocity of 
the projectile is as shown in Fig. 159, its velocity in a cairn, V, in­
ereased by the component J V of the air's velocity in the direction 
of motion. V' = V + JV is therefore the initial velocity necessary 
to produce the relative range, and similarly 4/ = 4>- J 4> cis the 
necessary angle of departure. 
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It is apparent from Fig. 160 that 

cd=bd-bc=bd~ (ac-ab) 

cd=X-(X'- WpT) 

and calling cd with its sign changed JX, we have 

JX=X'- (X+ WpT) 

Compute the relative range X' with the values V' and 1>', using 
the formulas with Table II. While the projectile is traversing this 
relative range the air particle moves over a distance W pT. The 
actual range traversed by the projectile is therefore X' =F W pT, and 
the variation in range due to the wind is 

X- (X' TWpT) 

Changing the sign and rearranging, we get 

JX =X'- (X± WpT) (49) 

in which X and T are computed from V and 1> without considering 
the wind. 

The upper signs in the above equations apply when the wind 
blows toward the gun, the lower signs When it blows toward the 
target. 

ApPLICATION OF METHoDs.-The first method of obtaining the 
variation in range due to wind is useful only when the angle of 
departure is small. The second method may be used in all prob­
lems of direct fire. 

227. Problem s.-What will be the effect of a one o'clock wind, 
blowing 30 miles an hour, on the range of the shot in Problem 1? 

Velocity in miles per hourX 44/30 = velocity in foot seconds. 

W =30 X 44/30 =44 f. s. 

W p = W cos ex = 38.1 f. s. 

From Problem 1: log C = 0.22185, X = 6000, V = 1700, 
T=4.48, 1>=20 42' 

, Therefore W pT=170.7, and X+WpT=6170.7 
First Method. V + W p = 1738 . 1 
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From Table I, 8(1738.1)=6220 .2- .81x43.8=6184.7 
T(1738.1)= 2.508- .81X .025=2.4878 . 

log TO . 65128 
log CO . 22185 

log T /C 0.42943 T/C=2.6880 
T(1738.1) 2.4878 

T(v+ W p) 5.1758 
From Table I, 

5.189-5.176 
v+ W p=1112+ .018 X2=1113.4: 

and 
14 

8(1113.4) =9860 .0-20 X20. 6 =9845.6 

8(1113.4) 9845.6 
8(1738.1) 6184.7 

log 3660.9 

log 6101.5 
X+ WpT 6170.7 

3.56359 
log C 0 .22185 

3.78544 

JX = -69.2 feet 

228. 8econd Method.-Find 

Equation (45) 

(46) 

(47) 

(48) , 
From sin 2 </>' = AC ) 

From Table II 

From Z=X'/C 

Equation (49) 

.JV =38.06 

V'=1738.1 

.J</> = 3'.6 

</>' = 2° 38' . 4 

A=0.05521 

Z=3671.5 

X' =6119.1 

X + W pT = 6170.7 

.JX = -51.6 feet 

391' 

Note the difference in the results of the two methods. Neither 
method is wholly satisfactory. 
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229. THE EFFECT OF WIND ON DEVIATION.-The component Of 
the wiiid perpendicular to the plane of fire, W sin a, is alone con­
sidered as producing deviation. The deviation due to the wind 
can only be determined by experiment for each kind of projectile. 

The following formula for the deviation of 8, 10, and 12 inch 
projectiles is given, in another form, in the Coast Artillery Drill 
Regulations. 

Deviation (yards) =[7.00000]sinaW(m.p.h.) (3300~:~?YdS.)r (50) 

in which W is the velocity of the wind in miles per hour, 
a its angle with the plane of fire, 
T is the time of flight in seconds, 
X the range in yards. 

Problem 6.-Compute the deviation of the shot in Problem 2 
for a two o'clock wind blowing 20 miles an hour. 

W =20 m.p.h. a =600 W sin a =17.32 T=12.46 

Deviation = [7.00000]17.32 C30~~ :~OOO) 2 = 16 yards, left. 

230. The Danger Space.-The danger space is the horizontal 
distance over which an object of a given height will be struck. It 
is the horizontal length of those portions of the trajectory for which 
the ordinates are equal to and less than the given height. Usually 
the danger space at the further end of the range is alone con­
sidered. 

The elements of the trajectory are assumed to be known. 
Let abc, Fig. 161, be the known trajectory for the range X, and 

b 

let y represent the height of the object for which the danger space 
'is to 'be determined. The danger space for this height is evidently 
so much of the range as lies beyond the ordinate y. It is equal to 
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the whole range minus the abscissa x corresponding to the ordinate 
y. Calling the danger space JXwe obtain JX =X -x. 

The problem of determining the danger Gpace therefore con­
sists in finding the value of x corresponding to the given value of 
y and subtracting from the given range. 

Substituting Cz for x in equation (37) and combining with 
equation (34) we obtain 

(A-a)z=2y cOS2r/>/C2 (51) 

in which A is the value of the function for the whole range X, and 
a the particular value of the same function for the abscissa x cor­
responding to the ordinate y. The elements of the whole range 
being known, and y given, the second member of the above equa­
tion is known, and A in the first member. There remain two 
quantities, a and z, to be determined from the equation. This is 
done by applying the method of double position. 

231. METHOD OF DOUBLE POSITION.-Enter Table II with the 
known value of V. Inspect the table and find a value of Z which . 

: when substituted with its corresponding value of a from the A 
column in the first member of equation (51) will give to that 
member a value close to the known value of the second member. 
The difference between the first and second members is the error. 
Repeat this operation until two successive values of Z are found, 
Zo and Zl, that give values for the first member, one value greater 
and one less than the value of the second member. 

Let Zo and Zl, Fig. 162, represent these values of Z; F 0 and F1 
the resulting values of the first member of equation (51); and S 
the known value of the second 
member. eo and e1 will represent 
the errors obtained with F 0 and 
Fl. It is evident from the figure 
that the true value of Z lies be­
tween Zo and Zl and that its dis­
tance from the smaller trial value 
Zo is given by the proportion 

Z-Zo eo 

Solving for Z 
Z1- Z0 = eO+e1 

z 

FIG. 162. 

(52) 
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In the application of this method to equation (51) we are assuming 
that (A-a)z varies proportionately with z between the values Zo 
and Zl. This is not a true assumption, but the results are suffi­
ciently approximate for practical use. 

To make this demonstration general we may consider that z 
and (A-a) in equation. (51) represent any two functions, f and f, 
whose product is known. We then have 

If=k 

We may write either f or f for Z in equation (52) and obtain 
the general formula 

eo 
/=10+ eo+e/h-1o) (53) 

We may now, employing the method of double position, deter­
mine from equation (52) the value of z in (51), and from the equa­
tion z=xjC we obtain the value of x corresponding to the given 
ordinate y. We then have for the danger space 

tiX=X-x (54) 

232. Problem 7.-What is the danger space, for an infantry­
man, in the 1000 yard trajectory of the service 0.30 caliber rifle; 
muzzle velocity, 2700 f. s.; bullet, 150 grains? 

This assumes that the rifle is fired from the ground. 
The height of a man is assumed at 5' 8" =5.67 feet=y. 
The value of the coefficient of forme, in the ballistic coefficient, 

as determined by experiment for the 150 grain bullet is e=O.5694, 
see foot-note. 

w=150j7000 d=O.3 V=2700 X=3000 

The coefficient of form is determined for the small arms bullet by means of 
actual measurements of the velocity. of the bullet at the ends of a long range, 
as, for instance, 500 yards. With the measured values of V and v, the latter 
corrected for the effect of wind if· there is any, and the measured range, the 
value of C is determined from the equation x=CIS(v)-S(V)1 by means of 
b.1llistic Table I. The coefficient of form c is then obtained from the equation 

c=1~ a cd' 

For the projectiles of large guns the coefficient c is determined by means 
of measured values of <P, V, and X, see Problem 12. 
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The steps in the operation are indicated as follows: 

C=w/cd2 Z-=X/C Table II, A sin 2 cp=Aa 
(A-a)z=2y cos2cp/C2 x=zC ,;IX =X-x 

C=w/cd2 log 7000 3.84510 

z=x/a 

log c i . 75542 
log d2 2 .95424 

2.55476 
log 150 2 . 17609 

log C i .62133 
log X 3.47712 

395 

log Z 3 .85579 Z=7174.5 
Table H, A= (0.06201)+0. 745 X 158=0.063187 
sin 2 cp=AC log A 2.80063 

log C i . 62133 

log sin 2 cp 2.42196 

(A-a)z=2y cOS2cp/C2 log 2y 1.05461 
log cos2 cp i . 99992 

1 05453 
log C2 i .24266 

2 cp= 10 30'.8 
cp=45'.4 

1.81187 (A-a)z=64.844 

Applying the method of double position to find the values of 
z and a that will satisfy this equation, we find by inspection of 
Table II for V = 2700 that the value of Z = 6500 with the corre­
sponding value of A, 0.05307, will when substituted in the last 
equation give a close approximation to 64.844. 

With Z = 6500 we obtain 

(0.063187 - 0.05307)6500 = 65.761 

eo == 65.761- 64.844 =0.917 

With Z=6600 
(0.063187 - 0.05449)6600 = 57.4 

el =64.844-5704=7.444 
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The results obtained with these values of Z are greater and less 
than 64.844. 

eo 
Then from Z=Zo+-+ (Zl-ZO) 

eo el 

0.917 
z=6500+ 0 . 917+7 .444 X 100 =-6511 

x=zG log z 3.81365 
log C i . 62133 

log x 3 .43498 x=2722.6 

JX=X-x JX =3000-2722.6=277.4 ft. =92.5 yds. 

For V = 2700 we will also find that the value Z = 1122.7 with 
the corresponding value of a will nearly satisfy the equation 
(A-a)z=64.844. This value of z gives x=469.5 feet, which is 
at once the danger space at the inner end of the trajectory, see 
Fig. 161. 

; 233. The Danger Range.-When the danger space is con­
tinuous and coincides with the range it is called the danger range. 
Thus the danger range for an infantryman is the range at every 
point of which an infantryman would be struck. The maximum 
ordinate of the trajectory is therefore 5 feet 8 inches. 

To determine the danger range we compute the horizontal tra­
jectory whose maximum ordinate Yo is given. 

Combining equations (34) and (39) and making cos p unity, 
since p for all danger ranges is very small, we obtain 

ao' ao" = 2Yo/C2 (55) 

FrOm this we determine ao' by trial by the method of double 
position, using the A' and A" columns of Table II. Since at the 
summit ao' =A, see (38), with this value of ao' we go to the A 
column of Table II for the given value of V and find the correspond­
ing value of Z, from which the required X is obtained. 

234. Problem 8.-What is the danger range, for a cavalryman, 
of the service rifle fired from the ground? The height of a, cavalry­
man is assumed as 8 feet. 

V =2700 log C= 1.62133 yo=8 
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The successive steps are indicated as foHows: 

log 2yo 
log C2 

Table II, Z 

1 .20412 
1 .24266 -

x=za 
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log ao'ao" 1.96146 ao' ao" = 91.508 

By inspection of Table II for V = 2700 we find that the product 
of ao' and ao" for Z = 3400 will give a close approximation. 

For Z = 3400 ao' ao" = 0 . 0467 X 1938 = 90 . 504 

eo =91.508-90.504= 1.004 

For Z = 3500 ao' ao" = 0 . 0488 X 2002 = 97 . 697 

el =97.697-91.508=6.189 

The first product obtained is less than 91.508 and the second 

product greater. In 1=/0+ e+
o (ft-Io) write ao' for I; 0.0467, 

eo el 
the smaller trial value of ao', for 10; and 0.0488tfor h. 

'(0 ) 1.004 
ao = .0467 +1.004+6.189X21 =0.04699 

or it may sometimes be more convenient to find the value of Z and 
then the value of ao'. Thus 

1 .004 
Z =3400+ 1.004+6.189XlOO=3414 

and ao'=(0.0467)+ .14X21 =0.04699 

Using this value of ao' in the A column, we obtain 

4699-4634 
Z=6000+ 129 X 100=6050.4 

x=za log Z 3.78178 
log C 1.62133 

log X 3.40311 

X =2529. 9 ft. =843 .3 yds. 
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The trajectory for this range is, at its highest point, 8 feet from 
the ground. A cavalryman at any point of the range would there­
fore be struck. 

235. Curved Fire.-Problems involving angles of departure 
less than 30 degrees, and initial velocities less than 825 f. s., are 
solved by means of the first part of Table II, pages 14 to 16, Bal­
listic Tables. The formulas to ~e used are collected on page VIII 
of the tables under the heading I' Formulas to be used with the 
first part of Table II." They will also be found under the heading 
Curved Fire on page 377, ante. 

For velocities less than 825 f. s. the resistance of the air is 
assumed to vary as the square of the velocity, or, as it is called, 
according to the Quadratic Law of Resistance. Under this law the 
fonnulas for direct fire are capable of modification into the forms 
that we are now considering. 

It may be shown that under the quadratic law of resistance 
the function A, for the same value" of Z =X/C, that is, for tqe 
same range and projectile, will vary for different values of V ill 
the ratio VI2/V2. If therefore we obtain the values of A with the 
value VI and all the necessary values of Z, we can pass by means 
of the above ratio to the value of A for any other velocity. The 
value VI = 800 was used in calculating the part of Table II that 
referS to velocities less than 825 f. s. 

The value of sin 21>, see equation (34), calculated for VI =800 
becomes for any other velocity 

. (800)2 AC sm 21>=AC V =[5.80618] V2 (56) 

the form in which it appears among the formulas we are consider­
ing. 

Under the quadratic law the other functions vary according to 
different ratios of VI and V, as shown by the formulas in " which 
they appear. Under this law the function B' becomes independent 
of the muzzle velocity, and therefore V does not appear in the 
formula for tan w. 

CORRECTION FOR ALTITuDE.-In curved fire the correction of thE: 
ballistic coefficient for altitude is made by the same process as in 
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direct fire, but using the value of sin 21> given by equation (56) 
instead of that given by equation (34). 

236. Problem 9.-A shot is fired from the 4.7 inch siege how­
itzer at a target 4000 yards distant; w=60 lbs., V =820 f. s., ba­
rometer 29".6, thermometer 63°. Correct the ballistic coefficient 
once for altitude and find the angle of departure and the time of 
flight. 

The process of correcting for altitude may be indicated as 
follows: 

c=l; C~2 Z=XjC Table II, A, ao" sin 21> = [5.80618]ACjV2 

Yo= ao"C tan 1> log (log f) =log Yo+5.01765 

Table VI, (\j 0' = 1.029 - 0.6(1.029 - 0:994) = 1.008 

C =10'1 .:!!!... 
0' cd2 

'1=1 c=l 

log O'dO' 

log w 

log d2 

0;00346 

1.77815 

1.78161 
1.34420 

log C1 0.43741 (1st approximation) 
Z=XjG log X 4 .07918 

log Z 3.64177 

Table II, Al =(0.24821)+ .83X662=0.25370 

A=ao' With ao' = 0 . 25370 find ao". 
2200 

Z-Zo =2537-2456 = 66 
100 123 . . 

ao" = 1138+ . 66 X 53 = 1173 

Bin 21>=[5.80618]ACJV2 

log A 1.40432 
log C1 0.43741 
const. 5 .80618 

5 .64791 

Z=4383 
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log V2 5.82762 
- -

log sin 2<p 1 .82029 2<Pi = 410 23'.2 
<Pi =200 41'.6 

log ao" 3 .06930 
logC1 0.43741 

log tan <P1 1 .57719 

log YOl 3.08390 

log (log I) =log Yo+ 0.01765 0.01765 

log (log It) 2 .10155 

log h 0.01263 
log C1 0 .43741 

log Cc 0.45004 

We will use this as log C in determining the angle of departure and 
time of flight. 

Z=XIC Table II, A, T' 

sin 2<p = [5.80618]AC /V2 

Z=XIC 

T=[2.90309]CT'IV cos <p 

log X 4 .07918 
log CO . 45004 

log Z 3.62914 

Table II, A=(0 .24163)+ . 574X658=0.24541 

sin 2<p=[5.80618]ACIV2 

log A 1 .38989 
log CO. 45004 
const. 5.80618 

5.64611 
log V2 5 .82762 

log sin 2 <p 1 . 81849 

T =[2. 90309]CT' IV cos <p 

Z=4257.4 

2<p=41° 10'.7 
<p = 200 35'.4 
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T'=(5.801)+ .574X152=5.8882 

log T' 0 . 76998 
log CO. 45004 

const. 2.90309 

4.12311 
log V cos P 2.88514 

log T 1 .23797 

401 

T=17.3 seconds 

237. High Angle Fire.-Problems in high angle fire are solved 
by means of Table IV. This table was computed under the quad­
ratic law of resistance and is practically a range table, for veloci­
ties less than 825 feet, for a projectile whose ballistic coefficient is 
unity. To make it applicable to other projectiles the tabular 
numbers involve the value of the ballistic coefficient with the 
values of the different elements. Therefore with C known, and 
applied as indicated in the headings of the columns, we may, with 
any other known element of the trajectory in addition to the ele­
vation, obtain from the different columns the values of the remain­
ing elements. 

Thus C, p, and V being known, find V IvC and take out of 
Table IV, for the particular value of p, the values of XIC, T IvC, 
etc., corresponding to V IvC as obtained. X, T, etc. may then 
be obtained. If p is not a tabular value, solve the problem for 
the tabular values of p on either side of the given value and 
interpolate between the results. 

To correct for altitude use the formulas log (log f) given at 
the head of each table. The value of the maximum ordinate is 
also there given in the terms of the range. 

THE COEFFICIENT OF REDUCTION.-While the quadratic law of 
resistance applies to veloeities less than 825 f. s., Table IV may be 
used for the higher velocities now obtained from our mortars by 
the introduction of the coefficient of reduction c into the ballistic 
coefficient. Compensation may thus be made for the errors arising 
from the use of the table for higher velocities. The coefficient of 
reduction is actually a quantity required to make the results 
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obtained from theformulas and Table IV agree with the results 
obtained in experiment. 

The values of c for the 1046 lb. mortar projectile have been 
calculated from actual firings for different ranges and angles of 
elevation. The detemlinations were made from firings with the 
12 inch cast iron steel hooped mortar. The values of c which are 
given in the following table therefore apply only to projectiles 
fired with the velocities u~ed in this mortar. In the steel mortar, 
model 1890, higher velocities are attained. 

The method employed in the calculation of the coefficient of 
reduction is shown in Problem 12. 

VALUES OF THE COEFFICIENT OF REDUCTION, c, FOR THE 1046 LB. 
PROJEaI'ILE IN THE 12 INCH MORTAR; DETERMINED FROM 
AaI'UAL FIRINGS. 

Range in Yards. 
Elevation, 

Degrees. 
3000 4000 5000 6000 7000. 8000 

--- - -------- ----- ---- ---- ._- --
45 1.59 2 . 11 1.93 1.76 1.53 1.25 
46 1.77 2.20 1.94 1. 76 1.55 1.28 
47 1.93 2.28 1.94 1. 77 1.57 1.32 
48 2.07 2 .34 1.95 1. 78 1.59 1.36 
49 2.19 2.38 1.95 1.79 1.61 1.40 

50 2 .29 2.41 1.96 1.80 1.6.1 1.44 
51 2.39 2.42 1.97 1.81 1.66 1.48 
52 2.48 2.42 1.98 1.82 1.68 1.52 
53 2 .56 2.42 1.99 1.83 1.71 1.56 
54 2.62 2.42 1.99 1.84 1. 74 1.61 

55 2.66 2.42 2.00 1.85 1.77 1.65 
56 2 .65 2.41 2.01 1.86 1. 79 1. 70 
57 2.64 2.40 2.02 1.87 1.82 1. 75 
58 2 .62 2.38 2 .04 1.88 1.85 1.80 
59 2.59 . 2.37 2.05 1.89 1.88 1.85 

60 2 .56 2.35 2.07 1.90 1.91 1.91 
61 2 .53 2.34 2.09 1.92 1.95 1.97 
62 2.49 2.32 2 . 11 1.94 1.99 2.04 
63 2.45 2.30 2.13 1.97 2.04 2.11 
64 2.41 2.28 2.15 2.01 2.09 2.18 
65 2 .37 2 .26 2.17 2.07 2.15 2.25 

238. Problems in High Angle Fire.-When C, 1>, and Vor X 
a.re given, to determine the remaining elements. 

1. Given C, V, and X, to determine 1> and the other elements. 
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METHOD. 1. With the given data find C1 =w/ d2, V /VC1, · and 
X /C1 • 

2. With the value of V Ive1 enter Table IV and find by in­
spection.in consecutive tables two values of X IC, one value greater 
and one value less than the trial value already determined. 

3. Assume the lesser of the elevations for the two tables as a 
first trial value of ¢, determine f from. the formula at the top of 
the table for this value of ¢ and compute Cc from Cc =fwlcd2• 

4. Then, using the value of Cc as C, redetermine V Ive and 
X/C. 

5. With these values reenter Table IV and redetermine as 
before a second trial value of ¢. 

6. With this value of ¢ and the given value of X compute V. 
7. If the computed value be greater than the given value, re­

compute with the next lesser value of ¢; if less, recompute with 
the next greater value. The given value of V will usually lie be­
tween the two values thus computed, if not continue the process • 
until this result is attained . 

. 8. Then interpolate for ¢, assuming it to vary directly with V. 
9. To find the other elements, T, UJ, and v .. , use the tables for 

the values of ¢ on each side of the value just determined. Find 
the values of these elements from each table, and interpolate be­
tween the values so determined for the values corresponding to 
the determined value of ¢. 

Problem Io.-A projectile weighing 1046 lbs. is to be fired 
from a 12 inch mortar, model 1888, to reach a target at a range of 
7180 yards. Assuming the muzzle velocity to be 950 f. s., deter­
mine the angle of elevation required. 

w=1046 d=12 V =950 X=21540 

1. C1 =w/d2 log C1 =0.86117 

V /va;, =352.48 X/C1 =2965 .4 

2. From Table IV, 

for ¢=59° 
¢=600 

3. Assume ¢ = 59° 

and V/vC=352.48 X/C=2971.7 
V /vC =352.48 XIC =2914 

. 180 
Page 402, c= 1.88-

1000 
X .03=1.8746 
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log (log I) = log X -5.32914 log X 4.33325 
const. 5.32914 

log (log f) 1.00411 

log 1 0.10095 
G=lw/d2c log w/d2 0.86117 

0.96212 
log c 0.27291 

--
log Cc 0.68921 

---
4. log V 2.97772 

log vc;, 0.34461 
---

log V/VC 2.63311 V/VC=429.65 

log X 4.33325 
log Cc 0.68921 

----
log X/C '3.64404 X/C=4406 

5. From Table IV, 
for 1>=55° and V/VC=429.65 X/C=4436.1 

1>=56° V/VC=429 .65 X/C=4375.1 
Computed V/VC=429.65 X/C=4406.0 

6. Assume 1>=55° c= 1. 77 - .18X .12 = 1. 7484 
log (log I) = log X - 5 .40257 log X 4.33325 

const. 5.40257 
---

log (log f) 2.93068 

log 1 0.08525 
c=fw/d2a log w/d2 0.86117 

0.94642 
log c 0 .24264 

--
log Cc 0.70378 
log X 4.33325 

log X/C 3.62947 X/C=4260.o 



EXTERIOR· BALLISTICS. 405 

Table IV, 
. /ri 1,58.6 

Vlv C=41O+ 170 XlO=419.33 

log V Iv Cc 2.622,56 
log vC; 0.35189 

log V 2.97445 V=942.87 
7. Assuming 4>=56° c=1.79- .18X .09=1.7738 

log (log I) = log X - 5.38029 log X 4.33325 

C=/w/d2c 

const. 5 .38029 

log (log f) 2 .95296 

log 1 0.08974 
l')g wld2 0.86117 

0.95091 
log cO. 24800 

log Ce 0.70201 
log X 4.33325 

log X IC 3.63124 X /e = 4278 

Table IV, 
65 

V IVC=420+ 168X10=423.87 

log V Ivc" 2 . 62723 
log vCe 0.35101 

log V 2.97824 V=951.13 

8. For V=942.87, ¢=55°, and for V=951.13, ¢=56°. 
Therefore for V =950 

4>=55°+ ~~:X60' =55° 51'.8 

9. To obtain the values of T, w, and v"" corresponding to 
¢=55° 51'.8, enter Table IV for ¢=55° and ¢=56°, using as 
arguments the values of V IVC obtained above in steps 6 and 7. 
For ¢=55°: For ¢=56°: 
VlvC=419.33 ' VIVC=423.87 
T IVC = 19.81+0.93XO.44=20.219 T Ive =20.656 

w=58° 59'+0.93XI0'=59° 8'.3 w=600 7'.9 
v wlvC = 355 + 0 .93 X 6 = 360.58 vwlVC = 364.73 
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From these values we derive, using the values of V C as deter~ 
mined in steps 6 and 7, 

T=45.462 
w=59° 8'.3 

vw =810.76 

T=46.351 
w=600 7'.9 

vw =818.43 

Interpolating between these values, that correspond to c/> = 55° 
and c/> = 56°, we find for c/> = 55° 51'.8 

T=45.46+ 5~8(46.35~45.46)=46.2 seconds 

w=59° 8'.3+ 5~8X59'.6=59° 59'.8 

51.8 f ds v .. =810.8+00X7.61=817.4 oot secon 

239. II. Given C, V, and C/>, to determine X and the other ele­
ments. 

METHOD. To determine the value of the coefficient c from the 
table on page 402 we must know both ¢ and X. In this problem 
X is unknown. 

1. We will therefore first determine from Table IVan approxi­
mate value of X, designated Xl, using for this purpose Cl =w/d2 
and the tabular value of c/> next greater than the given value. 

2. Take from the table for c the value of c corresponding 
to the value Xl and to the value of ¢ used in step 1. Call this 
value Cl. 

3. Determine a second approximate value for the ballistic co­
efficient C2 =W/c1d2• Correct for altitude by means of Table IV, 
using ¢ as in step 1; and with the corrected coefficient, C3, deter­
mine a corrected range, X 2. This corrected range will be suffi­
ciently close to the true range to enable us to obtain approxi­
mately the correct values of c from the table. This has been the 
object of the foregoing steps. 

4. With the corrected range, X 2, and the tabular values of ¢ 
on each side of the given value take new values of c from the table. 
Call these values C2 and determine with them two new values for 
C, designated C4 =W/c2d2• 
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5. By means of Table IV, for the values of ¢ on each side of 
the given value, correct both values of C4 for altitude. Call the 
resulting values C 5. 

6. Using the values C 5 as C find the corresponding values of 
V /v C and then, from Table IV, the corresponding values of X 
and the other elements. 

7. Interpolate between the values thus found for the values 
corresponding to the given value of ¢. 

Problem n.-Assume d= 12 inches, 
¢=55° 40' 

Determine X, T, w, and VW ' 

w=1046Ibs. 
V =950 f. s. 

1. C1 =w/d2 =[0. 86117] 
log V 2.97772 

log V C1 0.43059 

log V /vC1 2.54713 V /VCI ~352.48 

With this value we find from Table IV, for ¢=56°, 

X/CI =3084+ .25X156=3123 
log X /C1 3.49457 

log C1 0.86117 

log Xl 4.35574 Xl =22685 ft. 
=7561.7 yds. 

2. From the table of values of c, with X = 7562 yds.and ¢ = 56°, 

C1 = 1. 79 - .562 X 0 .9= 1. 739 

3. C2=W/c1d2=Ct/Cl =[0.62087] 
For use in Table IV, log V 2 .97772 

log vC2 0.31044 

log V/V'75; 2.66728 V/vC2=464.81 

From Table IV, for ¢=56°, 

X/C2=4890+ .48 X 173 =4973 
log X/C2 3.69662 

log C2 0.62087 

log X 4.31749 
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log (log f) = log X -·5.38029 5.38029 

Determine V /VC3 

log (log I) 2 . 93720 

log 1 0 . 08654 
log C2 0.62087 

loge3 0.70741 

log V 2 .97772 
log va; 0 . 35371 

log V /va; 2 .62401 V /va; = 420.74 

From Table IV, for cp=56°, 

X/Ca=4213+ .07XI68=4224.8 
log X /Ca 3.62581 

log Ca 0.70741 

log X 2 4 .33322 X 2 =21539 ft. 
= 7179.7 yds. 

4. Since, in mortar fire, X will vary but little for a variation of 
one degree in cp, we may without material · error use this value X 2 

in the determination of c for 55° as well as for 56°. 
Therefore, from the table of values of c, with X = 7180 yds. and 

cp=55°, cp=56°, 

C2=1. 77- .18X .12=1. 748 
C. =W /c2d2 =CdC2 =[0.61863] 

5. For use in Table IV, 

log V 2.97772 
log ~ 0.30932 

log V/vC4 2.66840 

V/V(h';"466.02 

C2 = 1. 79 - . 18 X .09 = 1. 774 
C4 =[0.61222] 

log V 2.97772 
log ~ 0 . 30611 

log V /vC4 2.67161 

V/~=469.47 
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From Table IV, 

XjC4 = 4959+ .6XI76=5064 .6 XjC4 =5060.4 
log XjC4 3 .70455 

logC4 0.61863 
--

logX 4.32318 
const. 5.40257 

log (log f) 2.92061 

log f 0.08329 
log C4 0.61863 

logCs 0.70192 

6. For use in Table IV, 

log V 2.97772 
log VC 0.35096 

log V JVC 2.62676 
VjVC=423.41 

From Table IV, 

XjC=4272+ .34XI70=4329.8 
TjVC=20.25+ .34X .43=20.396 

w=59° 9'+ .34XI0'=5g0 12'.4 
vw jvC=361+ .34X7=363.38 

log XjC4 3.70418 
logC4 0 .61222 

log X 4.31640 
canst. 5.38029 

log (log f) 2.93611 

log f 0.08632 
logC4 0.61222 

logCs 0.69854 

log V 2.97772 
lo'gVC 0.34927 

log V JVC 2.62845 
VjVC=425.06 

XjC=4298.7 
TjVC=20.704 

w=600 9'.1 
vw jVC=365.57 

From the above values we derive 

X =21797 X =21472 
T=46.272 T=45.763 

w=59° 12'.4 w=60° 9'.1 
Vw =815 .3 vw =817 .03 

409 

7. Interpolating between these values, that correspond to 
1>=55° and 1>=56°, we find for 1>=55° 40' 

X =21580 ft.=7193.3 yards 
T = 46 . 1 seconds 
w=59° 46'.9 

t·w = 816.5 foot seconds 
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It will be seen that the approximate range, X 2 = 7179.7 yards, 
used in determining the vaJue of c, is very close to the true range, 
7193.3 yards. 

240. Calculation of the Coefficient of Reduction.-A recent 
addition. to Table IV, printed in the Journal 01 the United 
States Artillery, Jan.-Feb., 1905, provides a simple method of 
computing the coefficient of reduction for any projectile, when 
1>, V, and X are determined from actual firings. 

A column containing values of V2 IX, obtained by combining 
the two columns V Ive and XIC, is added to the table. With 1> 
and V21X as arguments, we may obtain C from the value in the 
column V)V C. The value of ' C thus obtained is the complete 

a1 W 
value, C = I""'§ cd2' Determine 1 from the formula at the head of 

the table, and ada from Table VI. c is then readily determined. 
When the additional column giving the values of V2 IX is not 

at hand, the value of V Ive corresponding to any value of V2 IX 
may be readily determined from Table IV by trial. Square the 
values in the V IVC column and divide by the corresponding 
values in the X IC column until two values of V2 I X are found, 
one value greater and one less than the given value. By inter­
polation the value of V Iv C corresponding to the given value of 
V2 /X may then be found. 

241. Problem I2.-The range of the 1046 lb. projectile from 
the 12 inch steel mortar, model 1890 MI, is limited to 11,215 yards. 
The muzzle velocity of the projectile is 1150 feet, the velocity 
being limited by the requirement that the maximum pressure 
shall not exceed 33,000 lbs. In order to extend the range of the 
mortar a projectile weighing 824 lbs. is provided, for which, with­
out exceeding the allowed pressure, the muzzle velocity is in­
creased to 1325 feet and the range to 12,713 yards. 

Compute the value of the coefficient of reduction, c, for that 
projectile with the following data obtained in experiment. 

d=12 w=824 V =1325 1>=45° X =38,139 feet 
Barometer, 30".5 Thermometer, 65° F. 

The process of solution is indicated as follows: 



EXTERIOR BALLISTICS. 411 

V2/X Table IV, C from V IVC, log (log f) = log X-const.log. 

~1 w 
C=f"b Cd2 

From the given data, V2/X =46.03 
From Table IV we find with this value 

VIVc=639.25 
log V 3.12222 

log V IVC 2.80567 

logvC 0.31655 
log Cc 0.63310 

log (log /) = log X - 5.55099 log X 4.58137 
const. 5.55099 

log (log f) 1 .03038 
----

log f 0.10725 
log ~di3 1.99211 

logw 2.91593 

3.01529 
logCd2 2.79146 

log e 0.22383 C= 1. 6743 

242. Perforation of Armor.-The following empirical formulas 
are used by the Ordnance Department, U. S. Army, for calculating 
perforation of the earlier Krupp armor. . 

Uncapped projectiles, 
wv2 

t1•5 = [7.16459] d 

Capped projectiles, 

tOo7 = [4.84060] ~.:~ 
in which t = thickness perforated, in inches; 

w=weight of projectile, in pounds; 
o = striking velocity, in foot seconds; 
d=diameter of projectile, in inches. 
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The following formula has , been proposed by the Ordnance 
Board for capped projectiles against thin plates: 

( 
t ) 0·7 , U;O·5V 

-.- = [4 . 92665] -XI 75 sma 1";-' 

in which a is the angle of impact, that is to say, the angle between 
the axis of the projectile and the face of the plate. This formula 
is applicable to tempered nickel steel plates from 3 to 41 inches 
thick, and for angles of impact varying from normal to 50 degrees. 

The following formulas are used by the Bureau of Ordnance, 
U. S. Navy, for calculating the perforation of face hardened armor 
without backing. They apply to Harvey armor only. No for­
mula satisfactory to' the' Bureau has yet been developed for the 
perforation of the most modem Krupp armor. 

Uncapped projectiles, 

Capped prdjectiles, 

dill 
v = [3.34512) wi 

ditl 
v = [3 .25312] wi 

in which the letters represent the same quantities as in the for­
mulas above. 

The formula for capped projectiles is tentative only. 
Range Tables.~ The elements of the trajectories for different 

'ranges are calculated for each gun in the service and embodied 
with other information in a range table. The standard muzzle 
velocity and standard weight of projectile are used in the con­
struction of the table for each gun. The range is the argument in 
the table, the successive entries in the range column differing from 
each other by 200 yards. The perforation of armor" and the 
logarithm of the ballistic coefficient .corrected for altitude at stand­
ard temperature and pressure, are entered at intervals of 1000 
yards. 

The construction of range tables will be understood from the 
following data taken from the first line of the range table for the 
10-inch rifle. 
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Muzzle Velocity, ~~50 f. s. Projectile, capped, 60"", lbs. 
Range, X .. ... . .. , ............ ... .............. 1000 yards 
Angle of departure, <p ••••...... ....•. .. : • • . • . . .• 00 34'.1 
Change in elevation for 10 yds. in range. . . .. . . . . .. 0'.4 
Time of flight, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.37 seconds 
Angle of fall, w .. ...................... ' ......... 00 36' 
Slope of fall ............... -. . . . . . . . . . . . . . . . . . . .. 1 on 95 
Maximum ordinate, Yo • • . . . . . . . . . . . . . . . . . . . . . . .. 8 feet 
Striking velocity, v . .......................... " 2116 f. s. 
Perforation of Krupp armor, impact normal .... '" 13.3 incheB 

" ",' " 300 with normal.. . . . .. 11.2 incheB 
Ballistic coefficient, log C . .. . . . . . . . . . . . . . . . . . . . .. 0.78112 

Curvature of the Earth.-The angle of elevation is affected by 
the curvature of the earth about 15 seconds of arc for each 1000 
yards of range. 

The amount of curvature, in feet, is approximately two thirds 
the square of the range in miles, . or 

Curvature (ft.) = [7. 33289]X2(yds.) (59) 

ACCURACY AND PROBABILITY OF FIRE. 

243. Accuracy.-Theaccuracyof a gun at anyrange and under 
any given conditions of loading and firing is determined as follows. 

A number of shots are fired under the given conditions, care 
being exercised to make the circumstances of all the rounds as 
nearly alike as possible. The point of fall of each shot is plotted 
on a chart or marked on the target when practicable. The target 
may be either horizontal or vertical. We will assume a vertical , 
target. . 

The coordinates x and y of each shot-mark, or impact, are 
measured with respect to two rectangular axes X and Y drawn 
through an assumed origin conveniently placed. The sum of the 
abscissas divided by the number of shots, which is the mean 
abscissa, and the sum of the ordinates divided by the same num­
ber, the mean ordinate, are the coordinates of the mean point of 
fall, called the center of impact. 
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A representation of a target of 8 shots from the lO-inch rifle is 
shown in Fig. 163. The range was 3000 yards. The center of 
impact is at the center of the crossed circle. 

The distance, in the direction of the axis of Y, of any impact 
from the center of impact is the vertical deviation for the shot. 
The deviation is plus if the shot-mark lies above the center of 
impact, and minus if below. The distance of the shot-mark from 
the center of impact in the direction of the axis of X is the lateral 
deviation of the shot, plus if to the right, minus if to the left. 

FIG. 163. 

The numerical sum of the horizontal deviations divided by the 
number of shots is the mean horizontal deviation. The mean 
vertical deviation is similarly obtained from the numerical sum of 

, the vertical deviations. 
The actual distance of each shot from the center of impact is 

the absolute deviation for the shot, and the mean of the absolute 
deviations is the mean absolute deviation for the group. 

The mean absolute deviation is usually computed from the 
mean horizontal and vertical deviations by taking the square root of 
the sum of their squares. The value computed in this more con­
venient way differs slightly from the mean of the absolute devia­
tions. 

By comparing the mean absolute deviations of different groups 
of shots we may arrive at the comparative accuracy of different 
guns or of the same gun under different conditions of 16ading or 
fixing. 
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The measure of the ability of a gunner is the absolute distance 
of the center of impact of the group of shots from the point of the 

. target aimed at. 
244. EXAMPLE.-In a test of the lO-inch rifle for accuracy 8 

shots were fired at a vertical target distant 3000 yards. The co­
ordinates of the shots measured from a point on the target, see 
Fig. 163, are given below. Find the center of impact and the 
mean absolute deviation. 

Coordinates, Feet. Deviations. 
No. of 
Shot. 

Horizontal. Vertical. Horizontal. Vertical. 
---

I 12.20 11.00 0.80 1.65 
2 11.50 . 9.90 0.10 0.55 
3 13.30 9.75 1.90 0 .40 
4 11. 70 9.10 0.30 0.25 
5 13.20 9.15 1.80 0.20 
6 9.00 9.55 2.40 0.20 
7 11.05 7.15 0.35 2.20 
8 9.25 9.20 2.15 0.15 

---
8 91.20 74.80 9.80 5.60 

----
11.40 9.35 1.23 0.70 

The coordinates of the center of impact are: horizontal, 11.40 
feet; vertical, 9.35 feet. 

The mean deviations from the center of impact are: horizontal; 
1.23 feet; vertical, 0.70 feet. 

The mean absolute deviation = J 1.232 +0.702 =1.42 feet. 

245. Probability of Fire.*-Suppose that a large number of 
shots have been fired at a target, under conditions as nearly alike 
as possible, and that the center of impact of the group of shot­
marks on the target has been determined. 

If we count the number of impacts that lie within any given 
distance from the center of impact and divide this number by the 

* The greater part of the discussion of the subject of Probability of Fire 
follows the method set forth by Professor Philip R. Alger, U. S. Navy, in an 
article appearing in the Proceeding8 of the U. S. Naval In8titute,Whole No. 108, 
1903, and in the Journal of .the United States Artillery, March-April, 1904. 
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whole number of shots, the resulting fraction will express the 
probability that any shot will fall within the given distance. 

Probability is thus always expressed as a fraction of unity. If 
an event may happen in a ways and may fail in b ways, the prob­
ability of its happening is aj(a+b), and of its failing to happen, 
bj(a+b). The sum of these two fractions, unity, represents the 
certainty that the event will either happen or fail. Unity there­
fore indicates certainty. 

By examination of many groups of shots we learn that as we 
approach the center of impact the impacts become more numerous, 
also that both the vertical and horizontal deviations are as likely 
to be on one side of the center of impact as on the other. 

We also learn that the vertical and horizontal deviations are 
entirely independent of each other, and that any vertical deviation 
is just as likely to occur with one horizontal deviation as with 
another. This makes it necessary in considering probabilities 
that we consider the horizontal and vertical deviations separately. 

Let 0, Fig. 164, represent the center of impact of any group of 
v 

FIG. 164. 

shots used as a criterion. Considering only lateral deviations, lay 
off on the axis of X successive distances representing lateral de­
viations. 

Count the number of impacts on the target that lie within the 
distance Oa to the right of the center of impact. Erect at a an 
ordinate of such length that the area of the rectangle between the 
ordinate and the axis of Y represents the number of impacts 
found within the distance. 

Proceed in the same manner for the distance ab and for the 
other distances represented by the other divisions of the axis of X. 

The area of any rectangle divided by the area of all the rect­
angles will then be the probability that any shot will lie within the 
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limite of deviation between the limiting ordinates. As the total 
area of all the rectangles is a constant, the probabilities with re­
spect to deviations within any limits represented by different por­
tions of the axis of X are proportional to the rectangles erected on 
those portions. . . 

246. Probability Curve.-If we consider that a very large 
number of shots have been fired and make the rectangles very 
small, so that the base of each becomes dx, we obtain the area in 
the figure bounded by the curve and the axis of X. 

The curve is called the probability curve and the area under any 
part of it divided by the whole area is the probability that any 
shot will deviate from the center of impact within the limits be­
tween the limiting ordinates. 

If we consider the whole area under the curve as unity, the area 
under any part of the curve will represent at once the probability 
of a deviation within the limits between the limiting ordinates. 

As the ordinates may be considered as areas infinitely small in 
width any ordinate will represent the probability of a specific devia­
tion represented by the abscissa; that is, it will represent the proba­
bility that a shot will fall at a specific distance on either side of 
the center of impact. The area of the ordinate being infinitely 
small the chance that a shot will have any specific deviation is 
infinitesimal and not worthy of consideration. If we were deal­
ing with events that could happen only in a finite number of ways, 
each ordinate would be an area that would have a finite relation 
to the sum of all the ordinates or areas, and would then represent 
the probability of the happening of a particular event. 

CHARACTERISTlcs.-The curve is symmetrical with respect to 
the axis of Y, since the probability is the same for equal deviations 
on either side. The ordinate has its greatest value at the center of 
impact, since the center of impact is the mean position of all the 
shots and the probability of the deviations increases continuously 
as the deviations are less. The curve is theoretically an asymptote 
to the axis of X, since all deviations between + 00 and - 00 are 
possible. Practically it may be considered as meeting the axis of 
X at a short distance from the center, since with events happening 
under the same conditions large variations from the mean are not 
to be expected. ' . 
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While the curve as deduced applies to the deviations, or errorS, 
of shot, the laws that are expressed by it are general in character 
and apply to accidental errors of any kind. 

247. Equation of the Probability Curve.-The equation of 
the curve must be such as to express the characteristics just enu­
merated. Deduced by means of the theory of accidental errors, 
taking as its basis the axiom that the arithmetical mean of observed 
values of any quantity, the values occurring under similar circum­
stances, is the most probable value of the quantity, the equation 
takes the form 

1 Y=_ e- x2/".,. 
7rT 

(60) 

in which T is the mean error, in our case the mean deviation, and 
e=2.71828 the base of the Napierian system of logarithms. The 
factor 1/7rT is introduced to make the whole area under the curve 

unity, (1:«Je-x2/"r2dX=7rT), thus obviating the necessity of 

dividing a partial area by the whole area whenever a probability 
is to be computed. 

As stated above, the area under any part of the .curve divided 
by the whole area under the curve is the probability that the 
deviation of any shot will lie between the limits of deviation 
represented by the part of the axis of X between the limiting ordi-

nates. . The area under the curve is f ydx, and since we have 

introduced into y in equation (60) the factor required to make the 
whole area unity, the integral taken between limits will represent 
at once the probability for any limit of deviation. 

Thus the probability that any shot will have a deviation less 
than the numerical value Oa, Fig. 164, is 

(61) 

the factor 2 appearing since the ordinate at the end of the distance 
Oa occurs at equal distances on either side of the center. 

The values of P in this equation for various values of a and T 
are arranged in the following table with alT as an argument. 
Knowing the mean lateral or vertical deviation T, to find the prob-
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ability of a shot striking within the distance a to the right or left 
of the center of impact, it is only necessary to take from the table 
the value of P that corresponds to the argument air. 
PROBABILITY OF A DEVIATION LESS THAN a IN TERMS OF THE 

RATIO air. 

!!.- p !!.- p !!.- p ~ p 
r r r T 

-------._-----
0 .1 0.064 l.1 0.620 2 .1 0.906 3.1 0 .987 
0.2 0.127 l.2 0.662 2.2 0.921 3.2 0 .990 
0.3 0.189 l.3 0.700 2.3 0.934 3.3 0.992 
0.4 0.2.'>0 l.4 0.73.5 2.4 0.94.'> 3.4 0.994 
0 . .'> 0.310 l..'> 0.768 2 . .'> 0.9.'>4 3 . .'> 0.99.'> 
0.6 0 .368 l.6 0 .798 2 .6 0.962 3.6 0.996 
0.7 0.424 1.7 0.82.'> 2.7 0.969 3.7 0.997 
0.8 0.477 1.8 0.849 2.8 0.97-1 3.8 0.998 
0.9 0 . .'>27 l.9 0.870 2.9 0 .979 3.9 0.998 
1.0 0 . .'>7.'> 2.0 0.889 3.0 0.983 4.0 0.999 

248. ILLUSTRATION OF THE USE OF THE TABLE.-On Decernber 
17, 1880, at Krupp's proving ground at Meppen, 50 shots were • 
fired from a 12 cm. siege gun at 5° elevation, giving a mean range 
of 2894.3 meters. The points of fall were marked on the ground 
and their distances from assumed axes measured. The center of 
impact was thus determined. The lateral deviations were meas­
ured from the center of impact. The mean lateral deviation was 
1.07 meters. 

We will find from the table the probability that any shot should 
have a deviation of less than one meter from the center of impact. 

The deviation is a = 1. The mean lateral deviation is r = 1.07. 
Therefore a/r=1/1.07=0.935, and from the table, P=0.544, the 
probability that any shot will fall within 1 meter of the center of 
impact. 

For 50 shots the probability is that PX50 shots will be found 
within this limit of deviation, PX50=0.544X50=27. This num­
ber of shots actua~ly fell within the limit of deviation of 1 meter in 
the experiment. 

Making a=2 meters, a/r=2/1.07=1.87, P=0.864, and 
50 X 0.864 = 43. The probability is that 43 shots out of the 50 will 

. be found within 2 meters, laterally, of the center of impact. 
Forty-three shots were actually so found. 
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249. Probable Zones and Rectangles.-Since P is the prob­
ability that the de~iation of any shot will not be greater than a, 
lOOP represents the number of shots in 100 that will probably fall 
on both sides of the mean impact within the limit of the deviation 
a. It is therefore the percentage of hits that will probably be 
found in the zone defined by the limits at the distance a in both 
directions from the center of impact. From the table we find that 
for P=0.25, or 100P=25 per cent, a/r=O.4, or a=0.4r. The 
half width of the zone that probably contains 25 per cent of hits 

. is therefore OAr and the full width of the zone is 2a=0.8r. 
This zone is called the 925 per cent zone. 
Similarly for the zone that probably contains 50 per cent of 

hits, the 50 per cent zone, a=0.846r and 2a=1.69r. 
Knowing the mean deviation, vertical or horizontal, we may at 

once from these relations find the width of either zone. 
The 50 per cent zone is also called the probable zone and its 

half width is the probable error, or deviation, since it is the error 
that is just as likely to be exceeded as not to be exceeded. 

The 925 per cent rectangle is the rectangle formed by the inter­
section of the 50 per cent zones for lateral and vertical deviations. 
The probability of each of these zones being 1/2 the probability 
of the rectangle will be 1/2Xl/2. 

Similarly the 50 per cent rectangle is that formed by the inter­
section of the zones for each of which P=V1/2. It is also called 
the probable rectangle. 

COMPARISON OF THE ACCURACY OF GUNs.-The rectangles of 
probability may be used in comparing the accuracy of different 
guns. The probable rectangle is generally used when this method 
is employed. 

For small arms and high powered guns using direct fire the 
probable rectangle is taken in the vertical plane, since the targets 
for these guns usually offer a vertical front. 

For guns using curved or high angle fire the probable rectangle 
is taken in the horizontal plane. 

Probability of Hitting any Area.-The probability of hitting 
any area whose width is 2b and whose height is 2h, and which is 
symmetrical with respect to the center of impact, as the area abed, 
Fig. 165, assuming 0 as the center of impact, is equal to the product 
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of the two values of P taken from the table with biT", and hiT" as 
arguments, the subscripts indicating lateral and vertical deviations. 

If the center of impact lies in the 
given area, or on its edge, the proba- f 
bility of hitting the area is readily 
obtained by dividing the area into parts a 

by lines passing through the center of 
impact and taking the sum of the prob­
abilities of hitting the parts. 

Thus the probability of hitting the 
area efgh, Fig. 165, is the sum of the e 

probabilities of hitting the four rect- d 

angles into which it is divided by lines 
through the center of impact. The 

0 

g 

b 

k 

h 

c 

FIG. 165. 

probability for anyone of these rectangles is 1/ 4 the probability 
for the area, symmetrical to the center of impact, that is formed 
by four r~ctangles equal to the one considered. 

If the center of impact lies wholly without the area, the proba­
bility of hitting the area is obtained by extending the area to 
include the center of impact and then taking the difference of the 
probabilities for the whole area and for the part added to the 
original area. 

Thus the probability for the rectangle bg is equal to the proba­
bility for the rectangle og minus the sum of the probabilities for 
the rectangles ol and bk. 

APPENDIX TO CHAPTER IX. 

THE USE OF TABLE II-INGALLS' BALLISTIC TABLES. 

250. Description of Table n.-The several functions in this 
table are functions of two independent variables, V and Z. Each 
function varies with V and Z according to the law expressed by 
the equation which gives the value of the function, and the several 
'functions vary differently. Thus the functions A and A' and 
others decrease as V increases and increase as Z increases through­
out the table. The functions A" il.nd log B' increase with V and 
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increase with Z up to a value of V = 2500, beyond which point 
they will be found to increase with V for certain values of Z and 
to decrease with V for other values of Z. The function u in­
creases with V and decreases with Z throughout the table. 

The values of any function given in the table are the computed 
values obtained by assuming successive values for V and Z in the 
equation of the function. The constant difference 100 is taken 
between the successive values of Z. As most of the functions vary 
more rapidly when V is small, the computed values are taken 
close together for the lower values of V and at greater intervals 
for the larger values of V. Thus for values of V below 1000 the 
computations were made for values of V differing from each other 
by 25. Between V =1000 and V =2000, the difference between 
the tabular values of V is 50, and above V =2000 the difference is 
100. The purpose of this course was to obtain in the tables cor­
rect values of" the functions so close to each other as to permit the 
assumption, without material error, that the function v,aries uni­
formly between the tabulated values. This assumption enables us 
to interpolate between the given values with comparative ease. 

251. Deduction of Formulas for Double Interpolation.-To 
obtain a formula for interpolation we will proceed as follows. A 
function of two independent variables may be graphically repre­
sented by the length of a line drawn perpendicular to the plane 
which contains the axes of the variables. The variables in the 
tables are V and Z, Let us take from the table a value of anyone 
of the functions, as A, and call this value to, the corresponding 
values of V and Z being called Vo and Zoo Let the axis of V be 
horizontal and the axis of Z vertical. From . the point VoZo on 
the plane, Fig. 166, draw a line perpendicular to the plane, and 
layoff on it the length to equal to the value of the function taken 
from the table. Layoff the distance ZoZ2 parallel to the axis of . 
Z and equal to 100. From Z2 draw a line perpend:cular to the 
plane and layoff on it the v.alue of the function given in the same 

. table for the next greater value of Z. Layoff Vo V 2 parallel to 
the axis of V and equal to the difference between the two velocities 

. given in the caption of the table, and call this distance h. On a 
perpendicular to the plane at V 2 layoff the value of the function 
taken from the next succeeding table for the first va!ue of Z, and 
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from a point at a distance of 100 below V 2 layoff the next suc­
ceeding value of the function from this table. Complete the figure 
shown by the heavy lines. The solid represented by this figure is 
made up of all the values of the function lying between the four 
tabular values. 

k· ............. ·• .... ·_·····h, .... ·· .. · .......... ·· .......... ····;.j t;; ...... ·rV' - VoJ-.... · .. ·1r . V; 
.~ ..... :{.Z .... '.o . . 3 
'r' : 0 
: : 
• I 

! I' 
I • 

~ i 
i ~ 
I ! 
i I 

tZjZo) 
1 I 
: I 

100! 

I I 
t 1 
! .. iZ· .. · ---­
I 
I 

I 
M't .... M .... Zif' 

\ 
. \ 6vs 

. \', : \\, 

l·· .. h..: '\ 
~ ... -- .. ~ ... - ... --- ... ------.-. .:~--.. ------------------... \ 

FIG. 166. 

Let us cut the solid by a plane through V in the figure at a 
distance V - V 0 from V 0, and by another plane through Z in the 
figure at a distance Z - Zo from Zoo The intersection of these two 
planes, I, will be the value of the function corresponding to the 
values V and Z. In the column marked Jz in the table, opposite 
the value of each function, appears the difference between this 
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value and the value next below. This difference for 10, called 
.dz~, is represented in the figure; and similarly the corresponding 
difference in the .dv column, which is the difference between the 
values of the function for the same value of Z and successive 
tabular values of V, is shown as .dvo in the figure; and the next 
succeeding difference in the same column is shown as .dVl at the 
bottom of the figure. Draw vertical lines from c, m, and 1. 

From the figure: 

fo-de+ah=f 

h: .d Vo: : V - V 0: de 
V-Vo 

dC=-h-.dvo 

From the triangle cnm we have: 

nm=n1-m1 

lOO:nm : :Z-Zo:ab 

Z-Zo 
ab=lOOnm 

V-Vo 
n1 = ck = dk+ de = .dzo + -h-.dvo 

V-Vo 
m1=-h-.dvl 

V-Vo V-Vo . V-Vo 
nm = .dzo+ -h-.dvo- -h-.dVl = .dzo- (.dVl - .dvo)-h-

z-zor V-Vol 
ab = 100 t.dzo- (.dVl- .dvo)-h-J 

V - Vo Z-Zo r V - Vo} 
1=/o--h-.dvo+lOOt.dzo- (.dv1 -.dvo)-h- . 

The above expression having been deduced under the condi-· 
tions that the function decreases with V and increases with Z, we 
will indicate this by writing f~~;; for f. Transposing the terms 
of this formula, for convenience, it may be written: 
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and hy changing the signs according to the manner of the variation 
of the function with V and Z, we may write the formulas for those 
functions that vary in a different manner. 

The formula give3 the value of the function corresponding to 
the values of V and Z between the tabular values. If we solve it 
for V we obtain an expression for the value of V when non-tabular 
values of the function and of Z are given; and similarly, solving 
it for Z, the resulting formula will give the value.of Z correspond­
ing to non-tabular values of the function and of V. 

The formulas will be of the form given below. 
252. Double Int~rpolation Formulas-Ballistic Table II. 

/=non-tabular value of any function corresponding to the non­
tabular values V and Z. 

/0 = tabular value of function corresponding to tabular values Vo 
and Zo, always the nearest values less than V and Z. 

h = difference between velocities given in caption of table. 
Jvo and Jzo = tabular differences for /0, 
JVl = tabular difference next following Jvo in same table. 

f~~;: indicates that function decreases as V increases and iI).creases 
as Z increases. 

Use the following formulas for the functions A, A', B, T', log 
G', and D' throughout the table. They also apply for some values 
of the functions A" and log B' when V> 2500. 

( 
V- Vo ) f- fO--h-Jvo 

Z=Zo+ v- VoX 100 
Jzo- (JVl - JVo)-h-

Use the following formulas for the functions A" and log B' 
when V <2500, and for some values beyond that point. 
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<+V) Z-Zo V - Vo Z-Zo V - Vo 
t<+Z) =to+lOOJzO+-h-JvO+lOO ·-h-(Jvt-dvo) 

(
V - Vo ) 

1- 10+-h- JvO 

Z=Zo+ V- VOX 100 
Jzo+ (JVl - JVO)-h-

Use the following formulas for the function u. 

(
V - Vo ) 

10+ -h-Jvo - I . 
Z=Zo+ · V_VoXlOO 

Jzo+ (Jvo- JV1)-h-

Inspect the tables to determine how the function varies with 
V and Z, and select the proper group of formulas. 

Exercise great care in the use of the plus and minus signs. 
Double Interpolation in Simple Tables.-Regarding Fig. 166, 

from which the above formulas have been deduced, we will see that 
the interpolated value I of the function may be obtained from the 
four tabular values represented by the four heavy corner lines of 
the figure. Interpolating by the rule of proportional parts be­
tween the value 10 of the function and the value immediately 
below it in the same table for V,which value is represented at Z2 
in the figure, we obtain the value of the function at V oZ in the 
figure. Proceeding in the same manner in the table for the next 
value of V we obtain the value of the function at V 2Z in the figure. 
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Interpolating between the values at VoZ and V zZ we obtain the 
desired value f. 

This method is the most convenient method of double inter­
polation in simple tables, such as Table VI of the Ballistic Tables. 
The numbers in that table are simple and the data is all found 
together on one page. 

USE OF THE FORMULAS. 

253. Given Non-Tabular Values of V and Z, to Find f.­
Select the f formula applicable to the particular function. Take 
from the table the value of the function corresponding to the 
tabular values of V and Z next less than the given values. The 
tabular values of V and Z are Vo and Zo in the formula. Express 

V-Vo Z-Zo 
the fractions -h- and 100 decimally. If we take from the 

table at the same time with the function the corresponding num­
bers in the L1z and L1v columns, also the number next following in 
the L1v column, called respectively L1zo, L1vo, and L1Vl in the formula, 
we have all the data necessary for the EOlution of the problem. 
The numbers in the different columns of the table are obtained 
by considering the values of the functions as whole numbers. 
The corrections therefore must be applied to the function as if it 
were a whole number. 

In the examples which follow we will indicate by enclosing the 
decimal values of functions in parentheses that they are to be con­
sidered as whole numbers in applying the corrections. 

EXAMPLE. 

1. Given V=1015 Z = 37 J,.'B What is the value of A'! 

V- Vo= 15 = 3 
h 50· 

Z-Zo 
100 =.42 fo = 0.2946 

Jvo=223 JVl =230 

f= (0.2946) + .42 X 96-.3 X223-.42 X.3 X7 
= (0.2946) +40.32-66.9- .88 
= (0.2946) - 27.5 
=0.29185 
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2. Given V=887 Z=7~75 

V- V o=12 = 48 
h 25' 

What is the value of wg B'f 

Z-Zo 
100 =.75 

f= (0.09779)+ .75XI33+ .48X59- .75X .48Xl =0.099067 

To help in fixing the formulas for I in the mind, we will note 
that the correction for Jz is applied with a positive sign if the func­
tion increases with Z, and with a negative sign if the function 
decreases with Z. The correction for Jv is similarly applied ac­
cording as the function varies with V. The sign of the last t erm 
is positive if the signs of the two preceding terms are similar, and 
negative if they are dissimilar. The difference between the two 
values of Jv in the last term is usually positive and no attention 
need be paid to the sign of this difference except when dealing 
with the functions log B' and log C'. 

The formulas used in the above examples, which we will call 
the f formulas, and which give the values of the functions for non­
tabular values of V and Z, indicate the simplest and quickest 
method of arriving at the correct value of an interpolated func­
tion. This method should therefore always be followed in solving 
problems of this nature. 

3. Given V =1630 
4. Giwm V =972.4 
5. Given V = 2790 
6. Given V = 2790 

Z=3781 
Z=9569 
Z=1255 
Z=8473 

Find D' 
Find A 
Find log C' 
Find log C' 

Ans. 155.9 
Ans. 0.464181 
Ans. 4.65946 
Ans. 4.97732 

Note the difference in the signs of the last term of the formula 
in the two preceding examples; also the sign of the same term in 
the following example. 

7. Given V=1217 Z=8778 Find log B' Ans.O.138514 

Note that in the following example A" decreases with V. 

8. Given V =3040 Z =4926 Find A" Ans.2952.4 

254. Given Non-Tabular Values of the Function and of V, 
to Find Z.-Select the Z formula applicable to the particular 
function. Inspect the table on the page that contains the given 
value of V to find the proper values to substitute in the formula 
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for 10, Zo, and the tabular differences. To arrive at accurate re­
sults this requires some little care, and is best done in the following 
manner. By rapid inspection of the table find the two values of 
the function between which the given value lies. Apply to the 
tabular value corresponding to the larger value of Z the correc-

V- Vo 
tion -h-·,dvo. By comparing the corrected tabular value with 

the given value we determine on which side of the corrected 
tabular value the given value lies, and thereby determine which 
value of Z to use for 10 and the differences in the formula. An 
example will illustrate this . . 

9. Given A =O.061~1 V = ~19~ Find Z. 

V~Vo=.92 

Looking in the table for V =2100 we find that the given value 
of A lies between the values corresponding to Z = 5100 and 
Z = 5200. Applying to the value of the function corresponding to 

V- Vo 
the larger value of Z the correction -h-,dvo = .92 X 571 = 525 

we have (0.06263)-525=0.05738 as the value of the function for 
V =2192 and Z =5200. This value is less than the given value by 
about 380, and as the function increases with Z the given value 
lies below it in the table. 

The tabular ,dz for the value of the function, 0.06263, that we 
have taken from the table, is about 190; that is the function is here 
increasing by about 190 for each tabular value of Z. The tabular 
function when corrected gave us a value too small by 380. Con­
sequently if we take the second value of Z greater than 5200, the 
one we have used, we shall probably have the value we seek. 

We will therefore take the function for Z =5400 and apply the 
correction to get its value for V =2192. The corrected value is 
(0.06639) - .92 X 602 = 0.060852. As this is less than the given 
value of A and close to it, we know that the given value lies 
between Z =5400 and Z =5500, and we will use Z =5400 and the 
corresponding tabular values in the formula. 

It will be observed in each of the formulas for Z and V that, 
in the numerator of the last term, there is a term in parentheses 
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containing /0 plus or minus a correction. This term in paren­
theses is the tabular value of the function corrected for the differ­
ence between the given value of V or Z and the next less tabular 
value. It is essential, in order to arrive at correct results, that the 
value 0/ this term be /ound first for, as shown above, it is only by 
this means that we can determine the true tabular values of Z or 
V between which the required value lies. It will be shown later 
that without these values correct results cannot be obtained. 

In this example we have found the value of the term in paren­
theses to be (0.06639)- .92 X 602 =0.060852. Using this in the 
formula with the given value of the function and the tabular 
quantities corresponding to /0, the process becomes exceedingly 
simple, and the required value is easily and quickly and accu­
rately obtained. 

Zo=5400 /0=0.06639 .Jzo=193 .Jvo=602 .Jvl=618 

6121- 6085.2 
Z =5400+193_16X.92100 

358 
Z =5400+ 1782100=5420.1 

If we had not pursued the above course, but had used for Zo 
the smaller value of Z obtained at our first inspection of the table, 
the result would have been as follows. 

6121- 5568.4 
Z =5100+ 184-16X .92100 =5432.6 

The difference in the results is due to the fact that in using 
the value Z =5100 we assume that the function varies uniformly 
between this value and the obtained value, a difference of 332, 
while our process of interpolation is based on the assumption that 
the variation is uniform for a difference in Z of 100 only. 

The effect of the difference in the values of Z obtained by the 
twe methods may be seen in the problem from which the above 
data were taken. The value of the ballistic coefficient, C, was . 
4.7859 and the range X was required. X =ZC. 

With Z =5420.1 
With Z =5432.6 

X =25940 ft. 
X =26000 ft. 
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It may sometimes be more convenient, after having found the 
proper value of Z for use in the formula, to obtain from the table 
the corrected values of the function for that value of Z and for 
the next greater value of Z. The given value of the function will 

. lie between these two corrected tabular values, and the true value 
of Z may be found by the method of proportional parts. 

For V =2192 

A, given, 

Z=5400 
Z=5500 

.06121 

.060852 

A = (0.06639) - .92 X 602 =0.060852 
A = (0.06832)- .92X618=0.062634 

1782 

358 
Z = 5400 + 1782100 = 5420.1 

The results given by the two methods are the same. Indeed 
the methods are the same, for through the agency of Jzo and JVl 
in the formula we make use of the tabular values of the function 
corresponding to the second value of Z. It will be seen in the 
examples above that the fractions to be reduced are exactly alike. 

In problems in the text books on exterior ballistics the value 
of Z is nearly always determined to the nearest tenth. This in­
dicates that it is important to obtain the correct value. The 
correct value can be obtained, from the tables, only by inter­
polating between the nearest tabular values on each side. The 
importance of the preliminary application of the correction 
V-Yo 
--h-Jvo to the tabular values of the function, for the purpose of 

determining the proper value of Z to use, is therefore apparent. 
In using the formulas for Z and V the fractional coefficients 

of 100 !1nd of h in the last terms will always inform us whether we 
are in the proper place in the tables. Both numerator and 
denominator of the fraction must be positive, and the 
value of the fraction must be less than unity. A negative 
value of the fraction or a value greater than unity indicates that 
we have not used the nearest values of fo and Vo or Zo and the 
differences. The result is therefore approximate only, and th.e 
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degree of approximation varies with the num1;>er of units in the 
value of the fraction. 

The formulas for V and Z may be easily fixed in the memory 
if we observe that the numerator of the last term is the difference 
between the given value of the function and the nearest corrected 
tabular value, the correction being applied to the tabular value 
with a sign indicated by the manner of variation of the function 
with Z or V. The first term of the denominator is Jvo in the V 
formulas, and Jzo in the Z formulas. The sign of the second term 
of the denominator is the same as the sign inside the parentheses 
of the numerator. The value of the second term of the denomi­
nator is positive for all the functions except log B' and log G'. For 
some value of log B', and for most values of log G', JVl is less 
than Jvo, so that (JVl- Jvo) becomes negative and causes a change 
of sign for the second term of the denominator in the V and Z 
formulas, and for the last term in the f formulas. 

10. Given u=991 V =1630 Find Z. 

V-Vo=30= 6 
h 50· 

This value of u apparently lies between the values of Z = 4600 

b I · h . V-Yo and Z = 4700, ut app ymg t e correctIOn -h- Jvo = .6 X 15 = 9 

to 987, the tabular value of the function for Z =4700, adding it 
since u increases with V, we find that the value of u for V=1630 
and Z =4700 is 996. This being greater than our given value, 
and the function decreasing with Z, the given value corresponds 
to a value of Z greater than 4700. Similar inspection shows that 
the proper value of Z is less than 4800. We therefore use the 
values for Z =4700 in the formula. 

Zo=4700 10=987 Jzo=6 Jvo=15 JVl=15 

Z =4700+ 99:~~91100 =4783.3 

11. Given A" =2158 V=979 Find Z. 

V~Vo=.16 
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, The change in the function here is very slight for a change in 
V, and we see at once that this value of AI' lies between Z = 4000 
and Z=4100. 

Z =4000+ 21585~!~8.5.100=4034.2 

12. Given B=0:0341 V =2763 Find Z Ans.4053.4 
13. Given D' = 790 V = 1784.6 Find Z Ans. 7278.1 
14. GivenlogB'=0.07140 V=1146 FindZ Ans.3894.9 
15. Given A' =0.2252 V =970 Find Z Ans.2813.1 

255. Given Non-Tabular Values of the Function and of Z, 
to Find V.-This problem is slightly more troublesome than the 
one just explained, because as V is not given we cannot turn 
directly to the page on which the nearest tabular value of the 
function will be found. 

Select the V formula applicable to the particular function. 
With the next tabular value of Z less than the given value look 
through the table until two consecutive tables are found which, 
for this value of Z, give values of the function less and greater ' 

Z-Zo 
than the given value. Apply the correction lOOdzo to the 

tabular value corresponding to the larger value of V and deter­
mine, from the corrected tabular value, the side on which the 
given value liesr and the proper table to use. 

16. Given B=O.32386 Z =5887 Find V. 

Z-Zo 
100 =.87 

Inspecting the tables with the value Z = 5800 we find that 
tabular values of the function greater and less than the given 
value are found in the consecutive tables for V =900 and V =925, 
these values being respectively 0.3388 and 0.3230. Apparently 
then the value of V for the given function lies between 900 and 
925, and the values for to, Yo, etc., in the formula, should be taken 
from the table for V =900. But applying the correction 
Z-Zo 
lOOdzo=.87X77=67 to the tabular value of the function for 

Z = 5800 and V = 925, adding it since B increases with Z, we obtajn 
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for the function at V =925 and Z =5887, the value 0.3297, which 
is greater than the given value. Since B decreases with V the 
given value must therefore lie to the right of the value for V =925, 
and as the difference between the two is considerably less than 
the .Iv in the table, 144, we know without further inspection that 
the value for V lies between 925 and 950, and in the formula we 
will use the quantities taken from the table for V =925. 

Vo=925 Zo=5800 fo=0.3230 

Jzo=77 Jvo= 144 JVl = 147 

3297 - 3238.6 584 
V = 925 + 144+ 3 X .87 25 = 925+ 1466 25 = 935 

In a manner similar to that explained in the first problem under 
the previous heading this same value of V can be obtained, after 
having found the value of the function for Z =5887 and V =9~5, by 
finding the value of the function corresponding to Z = 5887 and 
the next tabular value of V, 950, and determining the true value 
of V by the. method of proportional parts. 

For Z=5887 

3297 

V=925 
V=950 

B, . given, 32386 

B= (0.3230)+ .87X77 =0.3297 
B= (0.3086)+ .87X74=0.31504 

1466 

584 
V =925+ 1466 25=935 

17. Given T'=9.130 Z=9378 

Z-Zo 
100 =.78 

Find V. 

Inspecting the table with Z =9300, we find that the given 
value of T' lies between the tabular values for V = 1600 and . 
V = 1650. Adding to 9.046, the value of T' for the larger value of V, 
the correction .78X128, we find that T' for Z=9378 is 9.146. We 
know then that the value of V sought is greater than 1650; and 
since 9.146-9.130 is less than the .Iv in the table, 152, we know 
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that V lies between 1650 and 1700. We therefore use in the 
fommla the values from the table for V = 1650. 

9146-9130 
V = 1650+ 152 + .78X 150 = 1655.2 

18. Given log B' =0.16512 Z =46125 Find V. 

Z-Zo 
100 =.25 

. ' tan cu 
From the value of tan cu, equatIOn (35), we have B' = tan <p' 

The same range may be attained by different shots fired with 
different velocities at different angles of elevation. The angles of 
fall will also be different. But the changes in the angle of eleva­
tion and angle of fall may be such that the ratio of the tangents of 
the angles will remain constant. We may therefore get similar 
values for B', and for its logarithm, with one value of X and widely 
different values of V. When, therefore, log B' is given and a ' 
value of Z, since Z contains X as a factor, we may find iIi the 
tables more than one value of V corresponding to these given 
values. Should this case be encountered in the solution of a 
ballistic problem, the proper value of V to use would be deter­
mined after consideration of the other data of the problem. 

With the data given above we find the two following solutions, 
in the tables for V = 1900 and V = 2900 respectively; using in the 
first the formula for V when log B' corresponds to a value of 
V <2500, and in the second the formula for V when log B' cor~e­
sponds to a value of V> 2500. 

Z-Zo 
log B'=0.1652 Z =4625 100 =.25 

V =1900 1652-1627.550 =1943 
+ 28+2X.25 

V ~2900+ 1655i~~~652100=2931.8 

Ai; we have before noted, the functions A" and log B', for some 
values of Z, increase with V when V < 2500 and decrease with V 
beyond that point. Therefore we may expect to find, for these 
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values of Z, equal values of either function on both sides of 
V =2500. 

19. Given u=931.3 Z=8122.7 Find V Ans. 2187.5 
20. Given B=0.16801 Z=6345 Find V Ans. 1832.0 
21. Given T' =3.7943 Z=4852 Find V Ans. 1747.0 
22. Given log B' =0.23376 Z =7318 Find V Ans.2226.0 

256. Given One Function and V or Z, to Find the Corre­
sponding Value of Another Function.-Inspecting the formulas 
for V and Z we see that the fractional coefficients of hand 100, 

V- Vo Z-Zo 
in the last terms, are respectively equal to -h- and ToO' 
We therefore take out this coefficient from the Z formula if V is 
given with the function, and from the V formula if Z is given, 
using the formula applicable to the given function. Substitute 

Z-Zo V- Vo 
the value thus obtained for 100 or for -h- in the I formula 

applicable to the required function, using for 10 and the differ­
ences in this formula the tabular values for the required function 
corresponding to the same values of V and Z as were used in the 
previous operation. 

23. Given A" =3150 V = 19~9 ,5 Find u. 

V-Vo 
-h-=·59 

From the Z formula for A" when V <2500 
5200 

Z-Zo 3150- (3116+5.9) 
100 65+ .59 =.43 

It will always be well when taking from the table the quanti­
ties required in computing the coefficient (Z - Zo) 1100 from the Z 
formula to write above Zo the tabular value used, as it is written 
in the above equation. This will serve as a memorandum as to 
what value of Zo to use when computing the value of the required 
function. 

The memorandum is not necessary when computing (V - Vo) Ih, 
as the value of Vo is indicated on the page at which the table is 
.open. 




